Exploring the planetary boundary for chemical pollution

Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if “unacceptable global change” is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient evidence shows stresses on ecosystem and human health at local to global scales, suggesting that conditions are transgressing the safe operating space delimited by a PBCP. As such, current local to global pollution control measures are insufficient. However, while the PBCP is an important conceptual step forward, at this point single or multiple PBCPs are challenging to operationalize due to the extremely large number of commercial chemicals or mixtures of chemicals that cause myriad adverse effects to innumerable species and ecosystems, and the complex linkages between emissions, environmental concentrations, exposures and adverse effects. As well, the normative nature of a PBCP presents challenges of negotiating pollution limits amongst societal groups with differing viewpoints. Thus, a combination of approaches is recommended as follows: develop indicators of chemical pollution, for both control and response variables, that will aid in quantifying a PBCP(s) and gauging progress towards reducing chemical pollution; develop new technologies and technical and social approaches to mitigate global chemical pollution that emphasize a preventative approach; coordinate pollution control and sustainability efforts; and facilitate implementation of multiple (and potentially decentralized) control efforts involving scientists, civil society, government, non-governmental organizations and international bodies.

General information
State: Published
Organisations: Department of Management Engineering, Quantitative Sustainability Assessment, University of Toronto, Stockholm University, Chalmers University of Technology, Swiss Federal Institute of Technology Zurich, University of Rhode Island, Swedish Toxicology Sciences Research Center (Swetox), Masaryk University, Stockholm Environment Institute, National Institute for Environmental Studies, University of Milan - Bicocca, University of Bayreuth, University of Gothenburg
Number of pages: 8
Pages: 8-15
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Environment International
Volume: 78
ISSN (Print): 0160-4120
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 7.32 SJR 2.568 SNIP 2.211
Web of Science (2017): Impact factor 7.297
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 7.33 SJR 2.472 SNIP 2.395
Web of Science (2016): Impact factor 7.088
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 6.49 SJR 2.544 SNIP 2.125
Web of Science (2015): Impact factor 5.929
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 6.54 SJR 2.708 SNIP 2.303
Web of Science (2014): Impact factor 5.559
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Keywords: Chemical emissions, Chemical management, Chemical pollution, Ecosystem health protection, Global threshold, Human health protection, Planetary boundary, Pollution controls, Stockholm Convention, Tipping point, Chemicals, Ecology, Ecosystems, Health, Indicators (chemical), Life cycle, Pollution, Pollution induced corrosion, Sustainable development, Ecosystem health, Human health, Stockholm, Pollution control

Electronic versions:

Diamond_et_al._2015_with_SI.pdf. Embargo ended: 10/02/2017

DOIs:

10.1016/j.envint.2015.02.001

Bibliographical note

The authors gratefully acknowledge financial support by the Swedish Research Council FORMAS (grant no. 2011-2171) and the International Panel on Chemical Pollution, which funded a workshop on this topic.

Source: Findit
Source-ID: 274040936

Research output: Research - peer-review › Journal article – Annual report year: 2015