Exploratory studies of the Cu–Pd–Se system at 650 °C, 550 °C, 400 °C, and 300 °C - DTU Orbit (19/02/2019)

Exploratory studies of the Cu–Pd–Se system at 650 °C, 550 °C, 400 °C, and 300 °C
The condensed-phase system Cu–Pd–Se was investigated by means of dry syntheses from elements in evacuated silica glass tubes at 650 °C, 550 °C, 400 °C, and 300 °C. Synthesized phases were analysed by electron microprobe and textural studies in polished sections. At 650 °C an extensive selenide liquid field covers central portions of the system, coexisting with a limited choice of Pd selenides, Cu$_{2-x}$Se, alloys, and a (Cu,Pd)Se$_2$ solid solution. The selenide melt recedes to the Pd side of the system at 550 °C and its remnants persist at 400 °C. At the lower temperature, the gamut of Pd selenides becomes richer, and especially Pd$_6$Se and Pd$_{17}$Se$_{15}$ display significant solubility of Cu. The composition range of (Cu,Pd)Se$_2$ broadens and moves towards Cu-richer compositions as temperature decreases; CuSe and CuSe$_2$ appear at 300 °C. The synthetic analogue of jagüeite, Cu$_{2-3x}$Pd$_3$Se$_{4-x}$, is present at 400 °C and 300 °C, at Se concentrations above the Cu$_{2-x}$Se–Pd$_{17}$Se$_{15}$ line. At all examined temperatures, the individualized CuPd alloy dissolves Se, up to ~5 at% at low temperatures.

General information
State: Published
Organisations: Department of Civil Engineering, Section for Geotechnics and Geology, University of Copenhagen
Contributors: Makovicky, E., Karup-Møller, S.
Number of pages: 8
Pages: 645-652
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: European Journal of Mineralogy
Volume: 29
Issue number: 4
ISSN (Print): 0935-1221
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.24 SJR 0.543 SNIP 0.803
Web of Science (2017): Impact factor 1.19
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.35 SJR 0.574 SNIP 1.055
Web of Science (2016): Impact factor 1.362
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.38 SJR 0.802 SNIP 0.935
Web of Science (2015): Impact factor 1.464
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.34 SJR 0.741 SNIP 0.889
Web of Science (2014): Impact factor 1.483
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.47 SJR 0.955 SNIP 0.943
Web of Science (2013): Impact factor 1.506
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.44 SJR 0.924 SNIP 1.05
Web of Science (2012): Impact factor 1.25
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.55 SJR 1.203 SNIP 1.1
Web of Science (2011): Impact factor 1.486