Experimental validation of a rate-based model for CO2 capture using an AMP solution - DTU Orbit (14/12/2018)

Experimental validation of a rate-based model for CO2 capture using an AMP solution

Detailed experimental data, including temperature profiles over the absorber, for a carbon dioxide (CO2) absorber with structured packing in an integrated laboratory pilot plant using an aqueous 2-amino-2-methyl-1-propanol (AMP) solution are presented. The experimental gas-liquid material balance was within an average of 3.5% for the experimental conditions presented. A predictive rate-based steady-state model for CO2 absorption into an AMP solution, using an implicit expression for the enhancement factor, has been validated against the presented pilot plant data. Furthermore, a parameter sensitivity analysis for the proposed model has been carried out.

General information

State: Published
Organisations: Center for Phase Equilibria and Separation Processes, Department of Chemical and Biochemical Engineering, Center for Energy Resources Engineering
Contributors: Gabrielsen, J., Svendsen, H. F., Michelsen, M. L., Stenby, E. H., Kontogeorgis, G.
Pages: 2397-2413
Publication date: 2007
Peer-reviewed: Yes

Publication information

Journal: Chemical Engineering Science
Volume: 62
Issue number: 9
ISSN (Print): 0009-2509
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.44 SJR 1.043 SNIP 1.516
Web of Science (2017): Impact factor 3.306
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.05 SJR 1.039 SNIP 1.464
Web of Science (2016): Impact factor 2.895
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.96 SJR 1.022 SNIP 1.589
Web of Science (2015): Impact factor 2.75
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.81 SJR 1.104 SNIP 1.629
Web of Science (2014): Impact factor 2.337
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.95 SJR 1.145 SNIP 1.843
Web of Science (2013): Impact factor 2.613
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.77 SJR 1.172 SNIP 1.828
Web of Science (2012): Impact factor 2.386
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.8 SJR 1.19 SNIP 1.678
Web of Science (2011): Impact factor 2.431
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.312 SNIP 1.698
Web of Science (2010): Impact factor 2.379
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.289 SNIP 1.742
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.294 SNIP 1.584
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.332 SNIP 1.553
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.305 SNIP 1.563
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.44 SNIP 1.775
Scopus rating (2004): SJR 1.299 SNIP 1.844
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 1.697 SNIP 1.661
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.864 SNIP 1.286
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.66 SNIP 1.732
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.124 SNIP 1.308
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 1.178 SNIP 1.511

Original language: English
DOIs: 10.1016/j.ces.2007.01.034
Source: orbit
Source-ID: 198594
Research output: Research - peer-review › Journal article – Annual report year: 2007