Experimental Study of a Low-Temperature Power Generation System in an Organic Rankine Cycle - DTU Orbit (15/12/2018)

Experimental Study of a Low-Temperature Power Generation System in an Organic Rankine Cycle

This paper presents a new power generation system under the principle of organic Rankine cycle which can generate power with a low-temperature heat source. A prototype was built to investigate the proposed system. In the prototype, an air screw compressor was converted into an expander and used as the engine of the power generator. The style of the preheater was a shell and tube heat exchanger, which could provide a long path for the working fluid. A flooded heat exchanger with a high heat transfer coefficient was taken as the evaporator. R134a was used as working fluid for the Rankine cycle in the system. This study compared and analyzed the experimental performance of the prototype at different heat source temperatures. The results show that the preheater and flooded evaporator was used for sensible heating and latent heating of the working fluid, respectively, as expected. When the temperature of the heat source increased, the pressure at the inlet of the screw expander increased, and the mass flow rate of the working fluid increased as well. The fluid at the outlet of the expander is superheated with an average superheating of 2.6 degrees C. In the range of 55-65 degrees C of the heat source, the average isentropic efficiency of the screw expander was 68%, and the efficiency of power generation varies from 1.2 to 4.56%. The highest value of thermodynamical perfectness was 29.06%. It can be concluded that organic Rankine cycle could be competitive for recovering low-temperature heat source to electrical power. (C) 2014 American Society of Civil Engineers.

General information
State: Published
Organisations: Department of Civil Engineering, Tianjin University
Contributors: Mu, Y., Zhang, Y., Deng, N., Nie, J.
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Journal of Solar Energy Engineering
Volume: 141
Issue number: 3
Article number: 04014017
ISSN (Print): 0199-6231
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.61 SJR 0.615 SNIP 0.891
Web of Science (2017): Impact factor 1.367
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.37 SJR 0.57 SNIP 0.881
Web of Science (2016): Impact factor 1.19
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.65 SJR 0.879 SNIP 1.272
Web of Science (2015): Impact factor 1.571
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.75 SJR 0.801 SNIP 1.351
Web of Science (2014): Impact factor 1.614
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.35 SJR 0.737 SNIP 1.54
Web of Science (2013): Impact factor 1.132
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.08 SJR 0.582 SNIP 1.1
Web of Science (2012): Impact factor 0.941
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1