Experimental measurement and modeling of the rate of absorption of carbon dioxide by aqueous ammonia

In this work, the rate of absorption of carbon dioxide by aqueous ammonia solvent has been studied by applying a newly built wetted wall column. The absorption rate in aqueous ammonia was measured at temperatures from 279 to 304K for 1 to 10wt% aqueous ammonia with loadings varying from 0 to 0.8molCO2/molNH3. The absorption rate in 30wt% aqueous mono-ethanolamine (MEA) was measured at 294 and 314K with loadings varying from 0 to 0.4 as comparison. It was found that at 304K, the rate of absorption of carbon dioxide by 10wt% NH3 solvent was comparable to the rates for 30wt% MEA at 294 and 314K (a typical absorption temperature for this process). The absorption rate using ammonia was however significantly lower at temperatures of 294K and lower as applied in the Chilled Ammonia Process. However, at these low temperatures, the rate of absorption in ammonia has only a small temperature dependency. The rate of absorption decreases strongly with decreasing ammonia concentrations and increasing CO2 loadings. The rate of absorption of carbon dioxide by aqueous ammonia solvent was modeled using the measurements of the unloaded solutions and the zwitter-ion mechanism. The model could successfully predict the experimental measurements of the absorption rate of CO2 in loaded ammonia solutions.

General information
State: Published
Organisations: CERE – Center for Energy Ressources Engineering, Department of Chemical and Biochemical Engineering, Department of Chemistry, Center for Energy Resources Engineering, DONG Energy AS
Pages: 1149-1162
Publication date: 2011
Peer-reviewed: Yes

Publication information
Volume: 5
Issue number: 5
ISSN (Print): 1750-5836
Ratings:
 BFI (2018): BFI-level 2
 Web of Science (2018): Indexed yes
 BFI (2017): BFI-level 1
 Scopus rating (2017): CiteScore 4.34 SJR 1.458 SNIP 1.758
 Web of Science (2017): Impact factor 4.078
 Web of Science (2017): Indexed yes
 BFI (2016): BFI-level 1
 Scopus rating (2016): CiteScore 4.38 SJR 1.343 SNIP 1.533
 Web of Science (2016): Impact factor 3.741
 Web of Science (2016): Indexed yes
 BFI (2015): BFI-level 1
 Scopus rating (2015): CiteScore 4.37 SJR 1.476 SNIP 1.555
 Web of Science (2015): Impact factor 4.064
 BFI (2014): BFI-level 1
 Scopus rating (2014): CiteScore 4.95 SJR 2.032 SNIP 2.442
 Web of Science (2014): Impact factor 3.946
 Web of Science (2014): Indexed yes
 BFI (2013): BFI-level 1
 Scopus rating (2013): CiteScore 5.66 SJR 2.282 SNIP 2.996
 Web of Science (2013): Impact factor 3.821
 ISI indexed (2013): ISI indexed yes
 Web of Science (2013): Indexed yes
 BFI (2012): BFI-level 1
 Scopus rating (2012): CiteScore 4.7 SJR 1.263 SNIP 2.008
 Web of Science (2012): Impact factor 3.944
 ISI indexed (2012): ISI indexed yes
 Web of Science (2012): Indexed yes