Experimental investigation of the effect of graphene nanofluids on heat pipe thermal performance - DTU Orbit (31/12/2018)

Experimental investigation of the effect of graphene nanofluids on heat pipe thermal performance

An experimental investigation has been carried out to examine the thermal performance of a sintered wick heat pipe using aqueous graphene nanoplatelets (GNP) nanofluids. The study focuses on changes in the effects of GNP concentration, heat pipe inclination angle and input heating power. The maximum reduction in the thermal resistance of a sintered wick heat pipe filled with 0.1 wt% of GNP is determined to be 48.4% compared with distilled water (DW). The results show that the maximum effective thermal conductivity enhancements for the heat pipe at a GNP concentration of 0.1 wt% and a tilt angle of 60° for heat input rates of 20, 40, 60 and 80 W are 23.4, 29.8, 37.2 and 28.3%, respectively, compared with a horizontal position (θ=0°). It is observed after the experiments that the deposition of GNP creates a coating on the sintered wick surfaces in the evaporator section. This coating layer increases the surface wettability, thereby enhancing the thermal performance of the heat pipe.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Colloids and Biological Interfaces, University of Malaya, University of Ontario Institute of Technology
Number of pages: 13
Pages: 775-787
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Applied Thermal Engineering
Volume: 100
ISSN (Print): 1359-4311
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.14 SJR 1.505 SNIP 1.837
Web of Science (2017): Impact factor 3.771
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.78 SJR 1.438 SNIP 1.851
Web of Science (2016): Impact factor 3.444
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.32 SJR 1.683 SNIP 1.884
Web of Science (2015): Impact factor 3.043
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.16 SJR 1.539 SNIP 2.187
Web of Science (2014): Impact factor 2.739
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.31 SJR 1.466 SNIP 2.469
Web of Science (2013): Impact factor 2.624
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.7 SJR 1.492 SNIP 2.422
Web of Science (2012): Impact factor 2.127
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2