Experimental infections with rifampicin-resistant Clostridium perfringens strains in broiler chickens using isolator facilities - DTU Orbit (27/03/2019)

Experimental infections with rifampicin-resistant Clostridium perfringens strains in broiler chickens using isolator facilities

Experimental infection studies were carried out on the ability of three Clostridium perfringens type A rifampicin-resistant strains to colonize the intestinal tract of broiler chickens kept in isolators from 1-day-old. Various doses of C. perfringens were given orally at 22 days, 9 days or 1 day old. At 22 days none of the strains, given in doses of approximately 10(10) colony-forming units, caused mortality or clinical necrotic enteritis. None was able to colonize the intestine permanently and all were eliminated within 9 days. One strain given to groups of 9-day-old birds was recovered only from those receiving high doses, but for no longer than 13 days. In chicks infected at 1-day-old there was transient colonization up to 15 days, and the most persistent colonization was in a group given a fresh broth culture of unwashed cells, including extracellular products. Test strains were rapidly replaced by naturally occurring strains of C. perfringens in all groups but they persisted for considerably longer in chickens inoculated at 1-day-old or at 9 days than those at 22 days, indicating a possible resistance to colonization with increasing age. The findings emphasize the difficulties of establishing a reproducible model for infection with C. perfringens in broiler chickens.

General information

State: Published
Organisations: Division of Microbiology and Risk Assessment, National Food Institute, Division of Poultry, Fish and Fur Animals, National Veterinary Institute
Contributors: Pedersen, K., Bjerrum, L., Nauerby, B., Madsen, M.
Pages: 403-411
Publication date: 2003
Peer-reviewed: Yes

Publication information

Journal: Avian Pathology
Volume: 32
Issue number: 4
ISSN (Print): 0307-9457
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.88 SJR 0.871 SNIP 1.047
Web of Science (2017): Impact factor 2.054
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.46 SJR 0.637 SNIP 0.768
Web of Science (2016): Impact factor 1.596
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.55 SJR 0.882 SNIP 0.934
Web of Science (2015): Impact factor 1.336
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.79 SJR 1.037 SNIP 1.237
Web of Science (2014): Impact factor 1.639
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.07 SJR 1.067 SNIP 1.282
Web of Science (2013): Impact factor 2.041
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.91 SJR 0.984 SNIP 1.18
Web of Science (2012): Impact factor 1.729
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1