Experimental evaluation of enthalpy efficiency and gas-phase contaminant transfer in an enthalpy recovery unit with polymer membrane foils - DTU Orbit (17/12/2018)

Experimental evaluation of enthalpy efficiency and gas-phase contaminant transfer in an enthalpy recovery unit with polymer membrane foils

Experimental studies were conducted in a laboratory setting to investigate the enthalpy efficiency and gas-phase contaminant transfer in a polymer membrane enthalpy recovery unit. One commercially available polymer membrane enthalpy recovery unit was used as a reference unit. Simulated indoor air and outdoor air by twin chambers was connected to the unit. Three chemical gases were dosed to the indoor exhaust air to mimic indoor air contaminants. Based on the measurements of temperature, humidity ratio, and contaminant concentrations of the indoor exhaust air and outdoor air supply upstream and downstream of the unit, the temperature efficiencies, humidity efficiencies, enthalpy efficiencies, and contaminant transfer ratios were calculated. The results showed that over 60% of enthalpy recovery efficiency could be achieved and that the contaminant transfer ratios were in the range of 5.4% to 9.0%. The enthalpy efficiency in cold-dry climate conditions was slightly higher than in hot-humid climate conditions. The contaminant transfer ratio were independent of any hygrothermal difference between indoor and outdoor air and was unrelated to its molecule size or water solubility. The conclusion indicated that the polymer membrane enthalpy recovery unit may be a viable choice for energy recovery in ventilation systems.

General information
State: Published
Organisations: Department of Civil Engineering, Section for Indoor Climate and Building Physics, Tianjin University, Shanghai Research Institute of Building Sciences
Contributors: Nie, J., Yang, J., Fang, L., Kong, X.
Number of pages: 10
Pages: 150-159
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Science and Technology for the Built Environment
Volume: 21
Issue number: 2
ISSN (Print): 2374-474x
Ratings:
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 1.05
Web of Science (2017): Impact factor 1.183
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 1.01
Web of Science (2016): Impact factor 0.88
Web of Science (2016): Indexed yes
Scopus rating (2015): SJR 0.644 SNIP 0.888
Web of Science (2015): Impact factor
Web of Science (2015): Indexed yes
Scopus rating (2014): SJR 0.578 SNIP 0.846
Web of Science (2014): Indexed yes
Scopus rating (2013): SJR 0.618 SNIP 0.89
Web of Science (2013): Indexed yes
Scopus rating (2012): SJR 0.587 SNIP 1.109
Web of Science (2012): Indexed yes
Scopus rating (2011): SJR 0.541 SNIP 0.74
Web of Science (2011): Indexed yes
Scopus rating (2010): SJR 1.027 SNIP 0.955
Web of Science (2010): Indexed yes
Scopus rating (2009): SJR 1.767 SNIP 1.187
Web of Science (2009): Indexed yes
Scopus rating (2008): SJR 0.866 SNIP 0.903
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.804 SNIP 1.625
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.907 SNIP 1.302
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.471 SNIP 1.257
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.209 SNIP 1.999
Scopus rating (2003): SJR 1.091 SNIP 1.28
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.938 SNIP 1.733
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 2.473 SNIP 2.259
Scopus rating (2000): SJR 0.712 SNIP 2.004
Scopus rating (1999): SJR 0.368 SNIP 0.778
Original language: English
DOIs:
10.1080/10789669.2014.967165
Source: FindIt
Source-ID: 2263996115
Research output: Research - peer-review; Journal article – Annual report year: 2015