Experimental demonstration of non-reciprocal transmission in a nonlinear photonic-crystal Fano structure

We suggest and experimentally demonstrate a photonic-crystal structure with more than 30 dB difference between forward and backward transmission levels. The non-reciprocity relies on the combination of ultrafast carrier nonlinearities and spatial symmetry breaking in a Fano structure employing a single nanocavity.

General information
State: Published
Organisations: Department of Photonics Engineering, Nanophotonics Theory and Signal Processing, High-Speed Optical Communication, Nanophotonic Devices, Department of Micro- and Nanotechnology
Contributors: Yu, Y., Chen, Y., Hu, H., Xue, W., Yvind, K., Mørk, J.
Number of pages: 2
Publication date: 2015

Host publication information
Title of host publication: Proceedings of 2015 Conference on Lasers and Electro-Optics (CLEO)
Publisher: IEEE
Article number: SF2H.5
ISBN (Print): 978-1-55752-968-8
Keywords: high-speed optical techniques, nanophotonics, nonlinear optics, photoemission, photonic crystals, General Topics for Engineers, Photonics and Electrooptics, backward transmission levels, Cavity resonators, Couplings, forward transmission levels, Nonlinear optics, nonlinear photonic-crystal Fano structure, nonreciprocal transmission, Optical bistability, Optical waveguides, Photonics, single nanocavity, spatial symmetry breaking, ultrafast carrier nonlinearities, Ultrafast optics
DOIs:
10.1364/CLEO_SI.2015.SF2H.5

Bibliographical note
From the session: Photonic Crystals (SF2H)
Source: FindIt
Source-ID: 275757923
Research output: Research - peer-review; Article in proceedings – Annual report year: 2015