Experimental approaches to predict allergenic potential of novel food

There are many unanswered questions relating to food allergy sensitization in humans. We don't know under what circumstances sensitization takes place i.e. route (oral, dermal, respiratory), age, dose, frequency of exposure, infection or bystander effect of other allergens. In addition we don't know under what circumstances oral tolerance develops.

With all these unanswered questions, it is a big challenge to design an animal model that, with relatively few animals, is able to predict if a food protein is a potential allergen. An even larger challenge is to predict its potency, a prerequisite for risk evaluation. Attempts have been made to rank proteins according to their allergenic potency based on the magnitude of the IgE response in experimental animals. This ranking has not included abundance as a parameter. We may be able to predict potential allergenicity i.e. hazard but our lack of understanding of the significance of dose for the development of food allergy or its counterpart oral tolerance makes risk assessment very difficult. In addition route of exposure and digestibility are relevant variables. Examples of the use and limitations of animal models for predicting the allergenicity of food proteins will be given. Possibilities and pitfalls will be discussed.
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.38 SJR 1.133 SNIP 1.157
Web of Science (2011): Impact factor 3.23
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.233 SNIP 1.15
Web of Science (2010): Impact factor 3.581
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.09 SNIP 1.202
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.02 SNIP 1.053
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.951 SNIP 1.211
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.018 SNIP 1.277
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.006 SNIP 1.109
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.007 SNIP 1.13
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.806 SNIP 0.949
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.6 SNIP 0.91
Scopus rating (2001): SJR 0.625 SNIP 0.734
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.336 SNIP 0.582
Scopus rating (1999): SJR 0.346 SNIP 0.511

Original language: English
DOIs: 10.1016/j.toxlet.2013.06.169

Bibliographical note
W12-4
Source: dtu
Source-ID: n::oai:DTIC-ART:elsevier/390566971::35327
Research output: Research - peer-review › Conference abstract in journal – Annual report year: 2013