Experimental anal infection of rainbow trout with Flavobacterium psychrophilum: A novel challenge model

Flavobacterium psychrophilum is a Gram-negative psychrophilic bacterium causing rainbow trout fry syndrome (RTFS) in fry and bacterial coldwater disease (BCWD) in older fish. Both diseases challenge fish welfare and economy in hatcheries and in on-growing facilities. The bacteria enter hosts through gills, skin, and the gastrointestinal tract, and transfer horizontally in contaminated water and vertically with sexual products of both male and female fish (Madetoja, Dalsgaard, & Wiklund, 2002; Madsen & Dalsgaard, 1999; Nematollahi, Decostere, Pasmans, & Haesebrouck, 2003). Protection afforded by experimental vaccination (injection or immersion) using bacterins (formalin-killed whole cell) has been described (Hoare, Ngo, Bartie, & Adams, 2017; Madetoja et al., 2006), although no commercial vaccine is presently available for control of RTFS and BCWD. Further research on RTFS/BCWD vaccinology will benefit from an improved challenge method as current methods comprising intraperitoneal (i.p.) injection, bath, and bath exposure after treatment with stressors such as hydrogen peroxide (Henriksen, Kania, Buchmann, & Dalsgaard, 2015; Madsen & Dalsgaard, 1999) remain difficult to reproduce and rely on wounding the structural integrity of mucosal surfaces. The present study compares different infection methods and evaluates systems where the rainbow trout surface (skin, gills, and gut) is kept intact or injured. We compared six different challenge methods comprising anal intubation, i.p. injection, co-habitation, and bath challenge exposing either nontreated intact fish, fish chemically damaged by exposure to hydrogen peroxide or fish mechanically damaged by needle insertion in the tail-fin. Disease development was subsequently recorded for 4 weeks.

General information
State: Published
Organisations: National Veterinary Institute, Innate Immunology, Section for Immunology and Vaccinology, Public Sector Consultancy, Bacteriology & Parasitology, Fish Diseases, University of Copenhagen
Contributors: Chettri, J. K., Al-Jubury, A., Dalsgaard, I., Heegaard, P. M. H., Buchmann, K.
Number of pages: 3
Pages: 1917-1919
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of Fish Diseases
Volume: 41
Issue number: 12
ISSN (Print): 0140-7775
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.82
Web of Science (2017): Impact factor 2.004
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.12
Web of Science (2016): Impact factor 2.138
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.71
Web of Science (2015): Impact factor 2.053
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.99
Web of Science (2014): Impact factor 2.056
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.74
Web of Science (2013): Impact factor 1.507
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.7
Web of Science (2012): Impact factor 1.591
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.09
Web of Science (2011): Impact factor 2
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Web of Science (2010): Impact factor 1.603
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Web of Science (2008): Indexed yes
Web of Science (2007): Indexed yes
Web of Science (2006): Indexed yes
Web of Science (2005): Indexed yes
Web of Science (2004): Indexed yes
Web of Science (2003): Indexed yes
Web of Science (2001): Indexed yes
Web of Science (2000): Indexed yes
Original language: English
Keywords: Challenge model, Bacterial Cold Water Disease BCWD, Flavobacterium, Rainbow trout, Rainbow trout fry syndrome
DOIs: 10.1111/jfd.12888
Source: FindIt
Source-ID: 2439198343
Research output: Research - peer-review › Journal article – Annual report year: 2018