Experimental 3-D Vector Velocity Estimation with Row-Column Addressed Arrays

Experimental 3-D vector flow estimates obtained with a 62+62 2-D row-column (RC) array with integrated apodization are presented. A transverse oscillation (TO) velocity estimator is implemented on a 3.0 MHz RC array, to yield realtime 3-D vector flow in a cross-sectional scan plane at 750 frames per second. The method is validated in a straight-vessel phantom (Ø = 8 mm) connected to a flow pump capable of generating timevarying carotid waveforms. The out-of-plane velocity component perpendicular to the cross section of the vessel and the crosssectional area is used to estimate volumetric flow rates. The flow rate measured from five cycles is 2.3 mL/stroke ± 0.1 mL/stroke giving a negative 9.7% bias compared to the pump settings. It is concluded that 124 elements are sufficient to estimate 3-D vector flow, if they are positioned in a row-column wise manner.

General information
State: Published
Organisations: Department of Electrical Engineering, Biomedical Engineering, Center for Fast Ultrasound Imaging
Contributors: Holbek, S., Stuart, M. B., Jensen, J. A.
Number of pages: 4
Publication date: 2016

Host publication information
Title of host publication: Proceedings of IEEE International Ultrasonics Symposium
Publisher: IEEE
Electronic versions:
Holbek_et_al_Final.pdf
DOIs:
10.1109/ULTSYM.2016.7728399
Source: PublicationPreSubmission
Source-ID: 125699002
Research output: Research - peer-review › Article in proceedings – Annual report year: 2016