Evolution of the Metabolic Engineering Community

Metabolic Engineering emerged as an independent research field in the late 1980s and is often seen defined by two seminal papers in published in Science by James E. Bailey and Gregory Stephanopoulos in 1991 (Bailey, 1991, Stephanopoulos and Vallino, 1991). The early definitions of Metabolic Engineering focused on engineering the metabolism of living cells through directed genetic modifications with the objective to improve their properties, e.g. produce new products or increase titer, rate and yield of existing products. However, this called for an understanding of how metabolism operated. Consequently, metabolic flux analysis and other approaches for analyzing cellular physiology played a prominent role in the early days of Metabolic Engineering. This was a natural extension of developments in Biochemical Engineering which, at the time, was increasingly geared towards quantitative analysis of fermentation processes through detailed mathematical modeling at this time.

General information
State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Yeast Cell Factories, New Bioactive Compounds
Contributors: Nielsen, J., Lee, S. Y.
Pages: A1-A2
Publication date: 2018
Peer-reviewed: Unknown

Publication information
Journal: Metabolic Engineering
Volume: 48
ISSN (Print): 1096-7176
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 7.95 SJR 3.337 SNIP 1.787
Web of Science (2017): Impact factor 7.674
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 8.33 SJR 3.626 SNIP 1.865
Web of Science (2016): Impact factor 8.142
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 8.2 SJR 3.6 SNIP 1.809
Web of Science (2015): Impact factor 8.201
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 7.23 SJR 3.395 SNIP 2.009
Web of Science (2014): Impact factor 6.767
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 8.43 SJR 4.036 SNIP 2.164
Web of Science (2013): Impact factor 8.258
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 6.72 SJR 2.989 SNIP 1.847
Web of Science (2012): Impact factor 6.859
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 6.75 SJR 3.049 SNIP 2.038
Web of Science (2011): Impact factor 5.614
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 2.375 SNIP 1.786
Web of Science (2010): Impact factor 5.512
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 2.621 SNIP 1.4
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.789 SNIP 1.03
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.508 SNIP 1.182
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.28 SNIP 0.897
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.069 SNIP 1.042
Scopus rating (2004): SJR 1.688 SNIP 1.255
Scopus rating (2003): SJR 1.177 SNIP 0.869
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.702 SNIP 1.068
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.925 SNIP 0.755
Scopus rating (2000): SJR 0.724 SNIP 0.9
Original language: English
DOIs:
10.1016/j.ymben.2018.07.014
Source: FindIt
Source-ID: 2438076554
Research output: Communication › Journal article – Annual report year: 2018