Evaluation of probabilistic flow predictions in sewer systems using grey box models and a skill score criterion

Publication: Research - peer-reviewJournal article – Annual report year: 2012

View graph of relations

In this paper we show how the grey box methodology can be applied to find models that can describe the flow prediction uncertainty in a sewer system where rain data are used as input, and flow measurements are used for calibration and updating model states. Grey box models are composed of a drift term and a diffusion term, respectively accounting for the deterministic and stochastic part of the models. Furthermore, a distinction is made between the process noise and the observation noise. We compare five different model candidates’ predictive performances that solely differ with respect to the diffusion term description up to a 4 h prediction horizon by adopting the prediction performance measures; reliability, sharpness and skill score to pinpoint the preferred model. The prediction performance of a model is reliable if the observed coverage of the prediction intervals corresponds to the nominal coverage of the prediction intervals, i.e. the bias between these coverages should ideally be zero. The sharpness is a measure of the distance between the lower and upper prediction limits, and skill score criterion makes it possible to pinpoint the preferred model by taking into account both reliability and sharpness. In this paper, we illustrate the power of the introduced grey box methodology and the probabilistic performance measures in an urban drainage context.
Original languageEnglish
JournalStochastic Environmental Research and Risk Assessment
Publication date2012
Volume26
Issue8
Pages1151-1162
ISSN1436-3240
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 5

Keywords

  • Grey box modelling, Interval prediction, Reliability, Sharpness, Skill score, Urban drainage
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 51176343