Evaluation of PCR and DNA Sequencing for Direct Detection of Clostridium perfringens in the Intestinal Tract of Broilers

The aim of this investigation was to determine the presence of the opportunistic pathogen Clostridium perfringens by PCR and DNA sequencing, without previous cultivation. This methodology was then used to investigate how C. perfringens was affected by different preventive measures, such as ionophores and feed additives, for necrotic enteritis in broilers chickens. DNA was extracted from the intestinal content or intestinal tissue by DNA extraction kits. Detection limits for 16S rRNA, alpha-toxin, and cpb2 PCR gene targets were approximately 1×10^3, 5×10^4, and 1×10^6 cells per g of intestinal content or tissue, respectively, as determined with samples spiked with C. perfringens. The method was evaluated with samples from single conventional broilers or from pools of six birds of experimentally reared broilers. Conventional chickens, raised with salinomycin in their feed, showed reduced numbers of C. perfringens-positive samples ($P < 0.05$) for all three PCR tests. With respect to cpb2, a tendency to detect more samples as positive for C. perfringens was observed with increasing age. The addition of sodium butyrate and lactic acid in the feed for experimental birds had a minor effect ($P < 0.10$) on positive samples, as detected with the 16S rRNA PCR. For experimental birds fed whole wheat, only three out of six pools of six birds allowed detection of C. perfringens by the 16S rRNA PCR, compared to five for the untreated controls or the Avilamycin- or prebiotic-treated birds. All 16S rRNA partial gene sequences obtained were identical and were 99.5% similar to the rrnB gene of the type strain of C. perfringens. Two types of the partial cpb2 gene sequence were detected with a similarity of 93%. One type was translated into protein, whereas a stop codon was found in the other type. Both types were located in the "atypical" phylogenetic group of the cpb2 gene sequences. The PCR test, based on extraction of DNA from intestinal content, provided rapid screening of poultry for C. perfringens without the need to have access to facilities in order to immediately cultivate and identify bacteria at the location of sampling. Further work is suggested to determine the relationship between the degree of necrotic enteritis, the actual level of C. perfringens in the animal, and the detection achieved by PCR.

General information
State: Published
Organisations: IRITA, Food Safety Programme, INRA Institut National de La Recherche Agronomique, University of Copenhagen
Contributors: Henriksen, M. M. M., Bisgaard, M., Francesch, M., Gabriel, I., Christensen, H.
Pages: 441-448
Publication date: 2009
Peer-reviewed: Yes

Publication information
Journal: Avian Diseases
Volume: 53
Issue number: 3
ISSN (Print): 0005-2086
Ratings:
- BFI (2018): BFI-level 1
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 1
- Scopus rating (2017): CiteScore 1.26 SJR 0.656 SNIP 0.706
- Web of Science (2017): Impact factor 1.328
- BFI (2016): BFI-level 1
- Scopus rating (2016): CiteScore 1.24 SJR 0.6 SNIP 0.899
- Web of Science (2016): Impact factor 1.109
- Web of Science (2016): Indexed yes
- BFI (2015): BFI-level 1
- Scopus rating (2015): CiteScore 1.26 SJR 0.757 SNIP 0.783
- Web of Science (2015): Impact factor 1.104
- BFI (2014): BFI-level 1
- Scopus rating (2014): CiteScore 1.16 SJR 0.715 SNIP 0.666
- Web of Science (2014): Impact factor 1.241
- BFI (2013): BFI-level 1
- Scopus rating (2013): CiteScore 1.56 SJR 0.836 SNIP 0.745
- Web of Science (2013): Impact factor 1.107
- ISI indexed (2013): ISI indexed yes
- BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.75 SJR 0.877 SNIP 0.976
Web of Science (2012): Impact factor 1.734
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.59 SJR 0.803 SNIP 0.853
Web of Science (2011): Impact factor 1.462
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.961 SNIP 1.115
Web of Science (2010): Impact factor 1.623
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.992 SNIP 0.902
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 0.903 SNIP 0.989
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.65 SNIP 0.986
Scopus rating (2006): SJR 1.005 SNIP 1.07
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.775 SNIP 0.892
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.813 SNIP 0.838
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.624 SNIP 0.876
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.658 SNIP 0.928
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.616 SNIP 0.962
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.761 SNIP 1.185
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.694 SNIP 0.943
Original language: English
DOIs: 10.1637/8569-122608-Reg.1
Source: orbit
Source-ID: 277565
Research output: Research - peer-review › Journal article – Annual report year: 2009