Evaluation of HOPG mounting possibilities for multiplexing spectrometers - DTU Orbit
(10/12/2018)

Evaluation of HOPG mounting possibilities for multiplexing spectrometers

Four different methods for mounting HOPG analyzer crystals on Si holders have been evaluated in the design process of the new multiplexing spectrometer CAMEA. Contrary to neutron optics used in standard spectrometers, the new instrument concept employs a series of analyzer segments behind each other where the neutrons have to pass through the bonding compound of the different analyzer crystals. The different methods, namely screws, shellac, indium soldering and clips, have been evaluated with regards to background, transmission, cooling, activation and handling. The results presented here will give valuable input for future CAMEA-type spectrometers currently planned and designed at various neutron sources.

General information

State: Published
Organisations: Department of Physics, Swiss Federal Institute of Technology Lausanne, Paul Scherrer Institute
Contributors: Groatl, F., Bartkowiak, M., Bergmann, R. M., Birk, J. O., Marko, M., Bollhalder, A., Graf, D., Niedermayer, C., Rueegg, C., Rønnow, H. M.
Number of pages: 6
Pages: 30-35
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Volume: 858
ISSN (Print): 0168-9002
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.48 SJR 0.814 SNIP 1.333
Web of Science (2017): Impact factor 1.336
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.44 SJR 0.866 SNIP 1.354
Web of Science (2016): Impact factor 1.362
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.21 SJR 0.965 SNIP 1.284
Web of Science (2015): Impact factor 1.2
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.24 SJR 0.852 SNIP 1.265
Web of Science (2014): Impact factor 1.216
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.48 SJR 0.946 SNIP 1.446
Web of Science (2013): Impact factor 1.316
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.19 SJR 0.832 SNIP 1.36
Web of Science (2012): Impact factor 1.142
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.29 SJR 0.956 SNIP 1.414
Web of Science (2011): Impact factor 1.207
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.894 SNIP 1.11
Web of Science (2010): Impact factor 1.142
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.759 SNIP 1.372
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.755 SNIP 1.077
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.728 SNIP 1.384
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.84 SNIP 1.213
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.858 SNIP 1.135
Scopus rating (2004): SJR 0.902 SNIP 1.471
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.747 SNIP 1.254
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.724 SNIP 1.139
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.751 SNIP 1.125
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.817 SNIP 0.982
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.762 SNIP 0.998
Original language: English
Keywords: Neutrons, Neutron optics, Neutron scattering, Multiplexing, HOPG, Neutron spectrometer
DOIs: 10.1016/j.nima.2017.03.031
Source: FindIt
Source-ID: 2357362236
Research output: Research - peer-review; Journal article – Annual report year: 2017