Evaluation of a Loudspeaker-Based Virtual Acoustic Environment for Investigating sound-field auditory steady-state responses

Measuring sound-field auditory steady-state responses (ASSR) is a promising new objective clinical procedure for hearing aid fitting validation, particularly for infants who cannot respond to behavioral tests. In practice, room acoustics of non-anechoic test rooms can heavily influence the auditory stimulus used for eliciting the ASSR. To systematically investigate the effect of the room acoustics conditions on sound-field ASSR, a loudspeaker-based auralization system was implemented using a mixed order Ambisonics approach. The present study investigates the performance of the auralization system in terms of objective room acoustic measurements and sound-field ASSR measurements, both in the actual room and in the simulated and auralized room. The evaluation is conducted for a small room with well-defined acoustic properties. The room is carefully modeled using the novel room acoustic simulation tool PARISM (Phased Acoustical Radiosity and Image Source Method) and validated through measurements. This study discusses the limitations of the system and the potential improvements needed for a more realistic sound-field ASSR simulation.

General information
State: Published
Organisations: Department of Electrical Engineering, Acoustic Technology, Interacoustics A/S
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Journal of the Acoustical Society of America
Volume: 141
Issue number: 5
Article number: 3997
ISSN (Print): 0001-4966
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 1.77 SJR 0.695 SNIP 1.224
Web of Science (2017): Impact factor 1.605
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 1.83 SJR 0.819 SNIP 1.271
Web of Science (2016): Impact factor 1.547
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 1.77 SJR 0.854 SNIP 1.416
Web of Science (2015): Impact factor 1.572
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 1.8 SJR 0.887 SNIP 1.402
Web of Science (2014): Impact factor 1.503
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2 SJR 0.707 SNIP 1.937
Web of Science (2013): Impact factor 1.555
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 1.75 SJR 0.771 SNIP 1.619
Web of Science (2012): Impact factor 1.646
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2