Evaluating the impact of substrate and product concentration on a whole-cell biocatalyst during a Baeyer-Villiger reaction - DTU Orbit (28/01/2019)

Evaluating the impact of substrate and product concentration on a whole-cell biocatalyst during a Baeyer-Villiger reaction

The presence of high concentrations of substrate or product may impede the optimal functioning of a biocatalyst, more so in the case of whole cell biocatalysts where the metabolic status of the cells may be compromised. In this article we investigate these effects using as an example the Baeyer-Villiger oxidation of racemic bicyclo[3.2.0]hept-2-en-6-one to yield (+)-1(S),5(R)-2-oxabicyclo[3.3.0]oct-6-en-3-one and (+)-1(R),5(S)-3-oxabicyclo[3.3.0]oct-6-en-2-one by CHMO expressed in Escherichia coli TOP10. Multi parameter flow cytometry was used to illustrate that substrate (racemic bicyclo[3.2.0]hept-2-en-6-one) associated cell damage was concentration dependent. One of the two regioisomeric products [(-)-1(S),5(R)-2-oxabicyclo[3.3.0]oct-6-en-3-one] was also used to identify that product associated cell damage was time dependent. In addition, both substrate and product concentrations affected the observed reaction rate.

General information
State: Published
Organisations: Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering
Contributors: Shitu, J. O., Chartrain, M., Woodley, J.
Pages: 107-117
Publication date: 2009
Peer-reviewed: Yes

Publication information
Journal: Biocatalysis and Biotransformation
Volume: 27
Issue number: 2
ISSN (Print): 1024-2422
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 0.86 SJR 0.262 SNIP 0.428
Web of Science (2017): Impact factor 1.06
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.76 SJR 0.271 SNIP 0.37
Web of Science (2016): Impact factor 0.836
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.89 SJR 0.296 SNIP 0.374
Web of Science (2015): Impact factor 0.892
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 0.8 SJR 0.309 SNIP 0.496
Web of Science (2014): Impact factor 0.691
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.08 SJR 0.37 SNIP 0.528
Web of Science (2013): Impact factor 1.093
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 0.94 SJR 0.353 SNIP 0.588
Web of Science (2012): Impact factor 0.895
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.07 SJR 0.405 SNIP 0.553
Web of Science (2011): Impact factor 0.905