Estimation and Control of Wind Turbine Tower Vibrations Based on Individual Blade-Pitch Strategies - DTU Orbit (26/02/2019)

Estimation and Control of Wind Turbine Tower Vibrations Based on Individual Blade-Pitch Strategies

In this brief, we present a method to estimate the tower fore-aft velocity based upon measurements from blade load sensors. In addition, a tower dampening control strategy is proposed based upon an individual blade pitch control architecture that employs this estimate. The observer design presented in this brief exploits the Coleman transformations that convert a time-varying turbine model into one that is linear and time-invariant, greatly simplifying the observability analysis and subsequent observer design. The proposed individual pitch-based tower controller is decoupled from the rotor speed regulation loop and hence does not interfere with the nominal turbine power regulation. Closed-loop results, obtained from high fidelity turbine simulations, show close agreement between the tower estimates and the actual tower velocity. Furthermore, the individual-pitch-based tower controller achieves a similar performance compared with the collective-pitch-based approach but with negligible impact upon the nominal turbine power output.

General information

State: Accepted/In press
Organisations: Technical University of Denmark, Department of Wind Energy, Wind turbine loads & control, University of Sheffield
Contributors: Lio, W. H., Jones, B. L., Rossiter, J. A.
Publication date: 16 May 2019
Peer-reviewed: Yes

Publication information

Journal: IEEE Transactions on Control Systems Technology
ISSN (Print): 1063-6536
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.89 SJR 1.832 SNIP 2.728
Web of Science (2017): Impact factor 4.883
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 5.17 SJR 1.655 SNIP 2.643
Web of Science (2016): Impact factor 3.882
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.72 SJR 1.966 SNIP 2.798
Web of Science (2015): Impact factor 2.818
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.34 SJR 1.786 SNIP 3.006
Web of Science (2014): Impact factor 2.474
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.41 SJR 1.707 SNIP 3.41
Web of Science (2013): Impact factor 2.521
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.7 SJR 1.495 SNIP 3.011
Web of Science (2012): Impact factor 2
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 3.26 SJR 1.585 SNIP 2.909
Web of Science (2011): Impact factor 1.766
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.098 SNIP 2.391
Web of Science (2010): Impact factor 1.43
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.587 SNIP 2.789
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.43 SNIP 2.736
Scopus rating (2007): SJR 1.082 SNIP 2.205
Scopus rating (2006): SJR 1.021 SNIP 2.306
Scopus rating (2005): SJR 0.968 SNIP 2.593
Scopus rating (2004): SJR 1.173 SNIP 2.183
Scopus rating (2003): SJR 1.537 SNIP 2.355
Scopus rating (2002): SJR 2.342 SNIP 2.886
Scopus rating (2001): SJR 2.073 SNIP 2.262
Scopus rating (2000): SJR 0.608 SNIP 2.15
Scopus rating (1999): SJR 0.619 SNIP 1.579
Original language: English
Keywords: Active damping control, Kalman filter, state estimation of dynamical systems, wind energy.
DOIs:
10.1109/TCST.2018.2833064
URLs:
http://www.scopus.com/inward/record.url?scp=85047020072&partnerID=8YFLogxK (Link to publication in Scopus)
Source: Scopus
Source-ID: 85047020072
Research output: Research - peer-review › Journal article – Annual report year: 2019