Establishment of blue mussel beds to enhance fish habitats

Establishment of blue mussel beds to enhance fish habitats

Human activity has impacted many coastal fjords causing degeneration of the structure and function of the fish habitats. In Nørrefjord, Denmark, local fishermen complained of declining fish catches which could be attributed to eutrophication and extraction of sediments over several decades. This study aimed to establish blue mussel beds (Mytilus edulis) to increase structural complexity and increase the abundance of fish and epifauna in Nørrefjord. It was expected that the mussels would improve water transparency and increase the depth range and coverage of eelgrass (Zostera marina). New methods for mussel production and -bed construction were investigated in collaboration with local volunteer fishermen. The effect of the artificial mussel beds was most evident on a small scale. Video observations directly at the beds (Impact area) demonstrated increased biodiversity and a three times higher abundance of mesopredator fish compared to the Control area. Water clarity and eelgrass coverage were unchanged. Two methods for establishing mussel beds were tested. A total of 44 tons of blue mussels were produced and established in beds over an area of 121,000 m². Production of blue mussels directly on hemp sacs hanging on long-lines was the most effective method. This new method is potentially a useful management tool to improve fish habitats.

General information
State: Published
Organisations: National Institute of Aquatic Resources, Section for Ecosystem based Marine Management, Danish Shellfish Centre, Section for Marine Ecology and Oceanography, University of Southern Denmark, Nordshell IS, Aarhus University
Contributors: Kristensen, L. D., Stenberg, C., Støttrup, J., Poulsen, L. K., Christensen, H. T., Dolmer, P., Landes, A., Rajbek, M., Thorsen, S., Deurs, M. A. V., Grønkjær, P.
Pages: 783-796
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Applied Ecology and Environmental Research
Volume: 13
Issue number: 3
ISSN (Print): 1589-1623
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 0.8 SJR 0.268 SNIP 0.51
Web of Science (2017): Impact factor 0.721
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.78 SJR 0.301 SNIP 0.68
Web of Science (2016): Impact factor 0.681
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.53 SJR 0.222 SNIP 0.452
Web of Science (2015): Impact factor 0.5
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 0.76 SJR 0.311 SNIP 0.844
Web of Science (2014): Impact factor 0.557
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 0.81 SJR 0.301 SNIP 0.755
Web of Science (2013): Impact factor 0.456
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 0.74 SJR 0.413 SNIP 0.64
Web of Science (2012): Impact factor 0.586
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.57 SJR 0.337 SNIP 0.612
Web of Science (2011): Impact factor 0.379