Escherichia coli modular coculture system for resveratrol glucosides production

Escherichia coli modular coculture system for resveratrol glucosides production

In bio-based fermentation, the overall bioprocess efficiency is significantly affected by the metabolic burden associated with the expression of complete biosynthetic pathway as well as precursor and cofactor generating enzymes into a single microbial cell. To attenuate such burden by compartmentalizing the enzyme expression, recently synthetic biologists have used coculture or poly-culture techniques for biomolecules synthesis. In this paper, coculture system of two metabolically engineered *Escherichia coli* populations were employed which comprises upstream module expressing two enzymes converting para-coumaric acid into resveratrol and the downstream module expressing glucosyltransferase to convert the resveratrol into its glucosidated forms; polydatin and resveratroloside. Upon optimization of the initial inoculum ratio of two *E. coli* populations, 92 mg resveratrol glucosides/L (236 µM) was produced i.e. achieving 84% bioconversion from 280 µM of *p-*coumaric acid in 60 h by 3 L fed batch fermentor. This is the report of applying coculture system to produce resveratrol glucosides by expressing the aglycone formation pathway and sugar dependent pathway into two different cells.

General information

State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, iLoop, Duy Tan University, Vietnamese Academy of Science and Technology, Thainguyen University
Authors: Thuan, N. H. (Ekstern), Trung, N. T. (Ekstern), Cuong, N. X. (Ekstern), Van Cuong, D. (Ekstern), Van Quyen, D. (Ekstern), Malla, S. (Intern)
Number of pages: 13
Publication date: 2018
Main Research Area: Technical/natural sciences

Publication information

Journal: World Journal of Microbiology and Biotechnology
Volume: 34
Issue number: 6
Article number: 75
ISSN (Print): 0959-3993
Ratings:
- BFI (2018): BFI-level 1
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 1
- Scopus rating (2017): SNIP 0.81 SJR 0.604 CiteScore 2.14
- Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 1
- Scopus rating (2016): CiteScore 1.99 SJR 0.621 SNIP 0.88
- BFI (2015): BFI-level 1
- Scopus rating (2015): SJR 0.635 SNIP 0.941 CiteScore 1.83
- BFI (2014): BFI-level 1
- Scopus rating (2014): SJR 0.609 SNIP 1.06 CiteScore 1.83
- BFI (2013): BFI-level 1
- Scopus rating (2013): SJR 0.559 SNIP 0.898 CiteScore 1.64
- ISI indexed (2013): ISI indexed yes
- Web of Science (2013): Indexed yes
- BFI (2012): BFI-level 1
- Scopus rating (2012): SJR 0.554 SNIP 1.024 CiteScore 1.56
- ISI indexed (2012): ISI indexed yes
- BFI (2011): BFI-level 1
- Scopus rating (2011): SJR 0.609 SNIP 1.046 CiteScore 1.68
- ISI indexed (2011): ISI indexed yes
- BFI (2010): BFI-level 1
- Scopus rating (2010): SJR 0.556 SNIP 0.767
- BFI (2009): BFI-level 1
- Scopus rating (2009): SJR 0.531 SNIP 0.723
- BFI (2008): BFI-level 1
- Scopus rating (2008): SJR 0.476 SNIP 0.706