Escape angles in bulk chi((2)) soliton interactions
Publication: Research - peer-review › Journal article – Annual report year: 2002
We develop a theory for nonplanar interaction between two identical type I spatial solitons propagating at opposite, but arbitrary transverse angles in quadratic nonlinear (or so-called chi((2))) bulk, media. We predict quantitatively the outwards escape angle, below which the solitons turn around and collide, and above which they continue to move-away from each other. For in-plane interaction, the theory allows prediction of the Outcome of a collision through the inwards escape angle, i.e., whether the solitons fuse or cross. We find an analytical expression determining the inwards escape angle using Gaussian approximations for the solitons. The theory is verified numerically.
Original language | English |
---|---|
Journal | Physical Review E. Statistical, Nonlinear, and Soft Matter Physics |
Volume | 65 |
Issue number | 2 |
Pages (from-to) | 026601 |
ISSN | 1063-651X |
DOIs | |
State | Published - 2002 |
Bibliographical note
Copyright (2002) American Physical Society
Citations | Web of Science® Times Cited: 7 |
---|
- QUADRATIC NONLINEAR MEDIA, COLLISIONS, INDUCED WAVE-GUIDES, BEAMS, INCOHERENT-LIGHT, SPATIAL SOLITONS
Keywords
Download as:
Download statistics
No data available
ID: 4781560