Enzyme kinetics and identification of the rate-limiting step of enzymatic arabinoxylan degradation

Publication: Research - peer-reviewJournal article – Annual report year: 2012

View graph of relations

This study investigated the kinetics of multi-enzymatic degradation of soluble wheat arabinoxylan by monitoring the release of xylose and arabinose during designed treatments with mono-component enzymes at different substrate concentrations. The results of different combinations of α-l-arabinofuranosidases (EC 3.2.1.55), one derived from Aspergillus niger (AFAn) and one from Bifidobacterium adolescentis (AFBa), respectively, a β-xylosidase (EC 3.2.1.37) from Trichoderma reesei, and an engineered D11F/R122D variant of Bacillus subtilis XynA endo-1,4-β-xylanase (EC 3.2.1.8) were examined. The two selected α-l-arabinofuranosidases catalyze liberation of arabinose residues linked 1→3 to singly (AFAn) or doubly (AFBa) substituted xyloses in arabinoxylan, respectively. When added to arabinoxylan at equimolar levels, the AFBa enzyme catalyzed the release of more arabinose, i.e. had a higher rate constant than AFAn, but with respect to the xylose release, AFAn – as expected – exhibited a better synergistic effect than AFBa with β-xylosidase. This synergistic effect with AFAn was estimated to increase the number of β-xylosidase catalyzed cuts from ∼3 (with β-xylosidase alone) to ∼7 in each arabinoxylan substrate molecule. However, the synergistic effects between β-xylosidase and the α-l-arabinofuranosidases on the xylose release were low as compared to the effect of xylanase addition with β-xylosidase, which increased the xylose release by ∼25 times in 30min, to a yield equivalent to ∼104 β-xylosidase catalyzed cuts in each arabinoxylan substrate molecule. At equimolar addition levels of the four enzymes, the xylanase activity was thus rate-limiting for the β-xylosidase catalyzed depolymerization to release xylose from arabinoxylan. The work provides clues to design efficient enzymatic degradation of arabinoxylan into fermentable monosaccharides.

Original languageEnglish
JournalBiochemical Engineering Journal
Publication date2012
Volume69
Pages8-16
ISSN1369-703X
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 5

Keywords

  • Arabinoxylan hydrolysis, Enzyme kinetics, β-l-Arabinofuranosidase, β-Xylosidase, Endo-xylanase, Synergy
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 18266571