Environmental TEM study of the dynamic nanoscaled morphology of NiO/YSZ during reduction

Research output: Research - peer-reviewJournal article – Annual report year: 2015

View graph of relations

The reduction of a metal oxide is often a critical preparation step for activating catalytic behaviour. This study addresses the reduction process of NiO in pure form and in a composite of NiO/yttria-stabilized zirconia (YSZ) in hydrogen relevant for solid oxide electrochemical cells by comparing results from environmental transmission electron microscopy (ETEM) with thermogravimetric analysis (TGA). The temperature dependent reduction profiles obtained from TGA confirm an inhibitive effect from YSZ on the NiO reduction. The ETEM images show the growth of Ni in decaying NiO and reveal the nanoscale morphological changes such as pore formation in NiO above 280°C and densification and collapse of the pore structures above 400°C. The accelerated Ni front in NiO illustrates the auto catalysis of the reaction. A rapid temperature ramping from room temperature to 780°C in hydrogen in 1 second resulted in immediate morphological changes at the nanoscale from dense NiO to dense Ni. The analysis suggests that the inhibitive effect of YSZ on the NiO reduction reaction is not due to a direct local interaction between YSZ and NiO, but instead due to gas and/or mass transport limitations.© 2014 Elsevier B.V. All rights reserved.
Original languageEnglish
JournalApplied Catalysis A: General
Volume489
Pages (from-to)147–154
ISSN0926-860X
DOIs
StatePublished - 2015
CitationsWeb of Science® Times Cited: 10

    Research areas

  • Nickel oxide reduction, NiO, YSZ, SOFC, SOEC, In situ TEM, ETEM, Autocatalysis
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 102421201