Enhancing the long-term stability of Ag based seals for solid oxide fuel/electrolysis applications by simple interconnect aluminization

Ag-(0.8 mol%) CuO is used to successfully join aluminized ferritic stainless steel interconnect to the ceria-gadolinia (CGO) barrier layer of a solid oxide fuel/electrolysis cell by reactive air brazing at 1000 °C in air. The wetting of AgeCuO on CGO is tailored by varying the CuO content. The effects of the CuO content on the joint microstructure are discussed. The long-term stability of brazed joints is evaluated by aging in oxidizing (air) and reducing (4% H2:50% H2O:N2) atmospheres at 800 °C for 250 h. An Ag-2mol% CuO braze results in the best joint stability during aging. Aluminization of the steel to create an alumina surface layer provides excellent protection of the steel both during the joining process and aging in the 2 atm. No degradation related to steel corrosion and outward diffusion of elements from the steel can be observed.

General information
State: Published
Organisations: Solid State Chemistry, Department of Energy Conversion and Storage, Harbin Institute of Technology
Contributors: Si, X., Cao, J., Ritucci, I., Talic, B., Feng, J., Kiebach, W.
Pages: 3063-3074
Publication date: 2019
Peer-reviewed: Yes

Publication information
Volume: 44
Issue number: 5
ISSN (Print): 0360-3199
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.1 SJR 1.116 SNIP 1.267
Web of Science (2017): Impact factor 4.229
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.74 SJR 1.145 SNIP 1.315
Web of Science (2016): Impact factor 3.582
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.46 SJR 1.27 SNIP 1.314
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.54 SJR 1.207 SNIP 1.484
Web of Science (2014): Impact factor 3.313
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.38 SJR 1.265 SNIP 1.449
Web of Science (2013): Impact factor 2.93
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.96 SJR 1.499 SNIP 1.708
Web of Science (2012): Impact factor 3.548
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2