Engineering the Surface/Interface Structures of Titanium Dioxide Micro and Nano Architectures towards Environmental and Electrochemical Applications

Titanium dioxide (TiO₂) materials have been intensively studied in the past years because of many varied applications. This mini review article focuses on TiO₂ micro and nano architectures with the prevalent crystal structures (anatase, rutile, brookite, and TiO₂(B)), and summarizes the major advances in the surface and interface engineering and applications in environmental and electrochemical applications. We analyze the advantages of surface/interface engineered TiO₂ micro and nano structures, and present the principles and growth mechanisms of TiO₂ nanostructures via different strategies, with an emphasis on rational control of the surface and interface structures. We further discuss the applications of TiO₂ micro and nano architectures in photocatalysis, lithium/sodium ion batteries, and Li-S batteries. Throughout the discussion, the relationship between the device performance and the surface/interface structures of TiO₂ nanostructures will be highlighted. Then, we discuss the phase transitions of TiO₂ nanostructures and possible strategies of improving the phase stability. The review concludes with a perspective on the current challenges and future research directions.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Molecular Windows, Hebei University of Science and Technology, Boston College
Contributors: Wang, X., Zhao, Y., Mølhave, K., Sun, H.
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Nanomaterials
Volume: 7
Issue number: 11
Article number: 382
ISSN (Print): 2079-4991
Ratings:
Web of Science (2018): Indexed yes
Scopus rating (2017): SNIP 0.926
Web of Science (2017): Impact factor 3.504
Web of Science (2017): Indexed yes
Scopus rating (2016): SNIP 0.974
Web of Science (2016): Impact factor 3.553
Web of Science (2016): Indexed yes
Scopus rating (2015): SNIP 0.373
Web of Science (2015): Impact factor 2.69
Web of Science (2014): Impact factor 2.076
Original language: English
Keywords: Li-S batteries, Crystal structure, Lithium/sodium ion batteries, Phase stability, Photocatalysis, Surface/interface structure, Titanium dioxide
Electronic versions:
nanomaterials_07_00382.pdf
DOI:
10.3390/nano7110382

Bibliographical note
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
Source: FindIt
Source-ID: 2392849526
Research output: Research - peer-review : Journal article – Annual report year: 2017