Engineering an NADPH/NADP+ Redox Biosensor in Yeast

Genetically encoded biosensors have emerged as powerful tools for timely and precise in vivo evaluation of cellular metabolism. In particular, biosensors that can couple intercellular cues with downstream signaling responses are currently attracting major attention within health science and biotechnology. Still, there is a need for bioprospecting and engineering of more biosensors to enable real-time monitoring of specific cellular states and controlling downstream actuation. In this study, we report the engineering and application of a transcription factor-based NADPH/NADP+ redox biosensor in the budding yeast *Saccharomyces cerevisiae*. Using the biosensor, we are able to monitor the cause of oxidative stress by chemical induction, and changes in NADPH/NADP+ ratios caused by genetic manipulations. Because of the regulatory potential of the biosensor, we also show that the biosensor can actuate upon NADPH deficiency by activation of NADPH regeneration. Finally, we couple the biosensor with an expression of dosage-sensitive genes (DSGs) and thereby create a novel tunable sensor-selector useful for synthetic selection of cells with higher NADPH/NADP+ ratios from mixed cell populations. We show that the combination of exploitation and rational engineering of native signaling components is applicable for diagnosis, regulation, and selection of cellular redox states.

General information

State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, Synthetic Biology Tools for Yeast
Number of pages: 11
Pages: 1546–1556
Publication date: 2016
Peer-reviewed: Yes

Publication information

Journal: A C S Synthetic Biology
Volume: 5
Issue number: 12
ISSN (Print): 2161-5063
Ratings:
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 4.86 SJR 2.625 SNIP 1.107
Web of Science (2017): Impact factor 5.316
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 4.7 SJR 2.793 SNIP 1.05
Web of Science (2016): Impact factor 5.382
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 4.41 SJR 2.308 SNIP 1.056
Web of Science (2015): Indexed yes
Scopus rating (2014): CiteScore 3.84 SJR 3.809 SNIP 1.154
Web of Science (2014): Impact factor 4.978
Web of Science (2014): Indexed yes
Scopus rating (2013): CiteScore 3.42 SJR 1.84 SNIP 0.854
Web of Science (2013): Impact factor 3.951
ISI indexed (2013): ISI indexed yes
Web of Science (2012): Impact factor
ISI indexed (2012): ISI indexed no
Original language: English
Keywords: Redox, Biosensor, Dosage-sensitive genes, Yeast
DOIs: 10.1021/acssynbio.6b00135
Source: FindIt
Source-ID: 2306572106
Research output: Research - peer-review; Journal article – Annual report year: 2016