Energy-release rate and mode mixity of face/core debonds in sandwich beams

Energy-release rate and mode mixity of face/core debonds in sandwich beams
Closed-form algebraic expressions for the energy-release rate and the mode mixity are obtained for a debonded sandwich (trimaterial). The most general case of an "asymmetric" sandwich is considered (i.e., the bottom face sheet not necessarily of the same material or thickness as the top facesheet). The energy-release rate is obtained by use of the J-integral, and the expression is derived in terms of the forces and moments at the debond section. Regarding the mode mixity, a closed-form expression is derived in terms of the geometry, material, and applied loading, and it is proven that, in the trimaterial case, just as in the bimaterial case, the mode mixity can be obtained in terms of a single scalar quantity \(\omega \), which is independent of loading; the \(\omega \) value for a particular geometry and material can be extracted from a numerical solution for one loading combination. Thus, this analysis extends the existing formulas in the literature, which are for either a delamination in a homogeneous composite or an interface crack in a bimaterial. These new "trimaterial with a crack" formulas are also proven to yield the formulas for the limits of a bimaterial or for a homogeneous section with a crack. © 2012 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

General information
State: Published
Organisations: Department of Mechanical Engineering, Solid Mechanics, Georgia Institute of Technology
Pages: 885-892
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: AIAA Journal
Volume: 51
Issue number: 4
ISSN (Print): 0001-1452
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.42 SJR 0.763 SNIP 1.452
Web of Science (2017): Impact factor 1.556
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.58 SJR 0.857 SNIP 1.713
Web of Science (2016): Impact factor 1.638
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.99 SJR 0.779 SNIP 1.683
Web of Science (2015): Impact factor 1.326
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.28 SJR 0.8 SNIP 1.713
Web of Science (2014): Impact factor 1.207
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.25 SJR 0.832 SNIP 1.782
Web of Science (2013): Impact factor 1.165
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.54 SJR 0.798 SNIP 1.811
Web of Science (2012): Impact factor 1.08
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1