Energy-harvesting bio-electro-dehalogenation for sustainable wastewater treatment

Research output: Research - peer-reviewJournal article – Annual report year: 2018

View graph of relations

The concept of an “energy-harvesting bio-electro-dehalogenation” process is demonstrated, where exoelectrogenic bacteria in an anodic chamber of a microbial fuel cell (MFC) are used to capture and exploit the electrical energy stored in the biodegradable substrate (acetate). The acetate was derived from full electrocatalytic dehalogenation of non-biodegradable halogenated organic compounds (haloacetic acids) in the cathodic chamber. Cobalt(II) meso-tetraphenylporphyrin serves the role as electrocatalyst in the MFC. Cyclic voltammetric analysis shows that full dehalogenation requires a cathodic potential of −1.1 V vs. Ag/AgCl which can be augmented by stacked MFCs powered by the dehalogenated products. Cyclic voltammetric analysis and ion chromatography measurement confirm that electrogenerated cobalt(I) meso-tetraphenylporphyrin is catalyzing the reduction of tri-, di-, and monochloroacetic acids in a sequential dehalogenation processes. The energy harvesting concept is also applicable to other bio-electrochemical processes for treatment of bio-refractory pollutants.
Original languageEnglish
JournalElectrochimica Acta
Volume290
Pages (from-to)38-45
ISSN0013-4686
DOIs
StatePublished - 2018
CitationsWeb of Science® Times Cited: 0

    Research areas

  • Bio-electro-dehalogenation, Sustainable wastewater treatment, Microbial fuel cell, Metal macrocycles catalyst
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

ID: 153563290