Energy storage in hybrid organic-inorganic materials hexacyanoferrate-doped polypyrrole as cathode in reversible lithium cells - DTU Orbit (27/12/2018)

Energy storage in hybrid organic-inorganic materials hexacyanoferrate-doped polypyrrole as cathode in reversible lithium cells

A study of the hybrid organic-inorganic hexacyanoferrate-polypyrrole material as a cathode in rechargeable lithium cells is reported as part of a series of functional hybrid materials that represent a new concept in energy storage. The effect of synthesis temperatures of the hybrid in the specific capacity obtained from the cell is discussed. However specific capacities are obtained for materials synthesized at lower temperatures (0 degrees C). The preparation method of the electrodes is also a parameter of great importance: thin film cathodes made with poly(vinylidene fluoride) as a binder and Super P carbon as conducting additive show higher specific capacities than powder cathodes. These materials present modest specific capacities of up to 69 Ah/kg but withstand repeated cycles of charge/discharge with no loss of capacity, even with an initial gain during the first 60 cycles. (C) 2000 The Electrochemical Society. S0013-4651(00)04-075-1. All rights reserved.

General information
State: Published
Organisations: Department of Chemistry, Institut de Ciència de Materials de Barcelona
Contributors: Torres-Gomez, G., Skaarup, S., West, K., Gomez-Romero, P.
Pages: 2513-2516
Publication date: 2000
Peer-reviewed: Yes

Publication information
Journal: Journal of The Electrochemical Society
Volume: 147
Issue number: 7
ISSN (Print): 0013-4651
Ratings:
 BFI (2018): BFI-level 1
 Web of Science (2018): Indexed yes
 BFI (2017): BFI-level 1
 Scopus rating (2017): CiteScore 3.48 SJR 1.267 SNIP 1.009
 Web of Science (2017): Impact factor 3.662
 Web of Science (2017): Indexed yes
 BFI (2016): BFI-level 1
 Scopus rating (2016): CiteScore 2.97 SJR 1.222 SNIP 0.963
 Web of Science (2016): Impact factor 3.259
 Web of Science (2016): Indexed yes
 BFI (2015): BFI-level 1
 Scopus rating (2015): CiteScore 3.17 SJR 1.115 SNIP 1.066
 Web of Science (2015): Impact factor 3.014
 Web of Science (2015): Indexed yes
 BFI (2014): BFI-level 1
 Scopus rating (2014): CiteScore 3.36 SJR 1.213 SNIP 1.25
 Web of Science (2014): Impact factor 3.266
 Web of Science (2014): Indexed yes
 BFI (2013): BFI-level 1
 Scopus rating (2013): CiteScore 2.92 SJR 1.169 SNIP 1.309
 Web of Science (2013): Impact factor 2.859
 ISI indexed (2013): ISI indexed yes
 Web of Science (2013): Indexed yes
 BFI (2012): BFI-level 1
 Scopus rating (2012): CiteScore 2.61 SJR 1.329 SNIP 1.281
 Web of Science (2012): Impact factor 2.588
 ISI indexed (2012): ISI indexed yes
 Web of Science (2012): Indexed yes
 BFI (2011): BFI-level 1
 Scopus rating (2011): CiteScore 2.74 SJR 1.331 SNIP 1.335