Energy policies for low carbon sustainable transport in Asia - DTU Orbit (11/01/2019)

Energy policies for low carbon sustainable transport in Asia

Transformation of Asia's transport sector has vital implications for climate change, sustainable development and energy indicators. Papers in this special issue show how transport transitions in Asia may play out in different socio-economic and policy scenarios, including a low carbon scenario equivalent to 2 °C stabilization. Accounting for heterogeneity of national transport systems, these papers use diverse methods, frameworks and models to assess the response of the transport system to environmental policy, such as a carbon tax, as well as to a cluster of policies aimed at diverse development indicators. The analysis shows that CO2 mitigation in a transport system is achieved more effectively by aligning mitigation policies with sustainable development policies and measures such as mandates for mode share and choices such as urban design, information and communication systems, and behavioral measures. Authors therefore advocate policies that target multiple dividends vis-à-vis carbon mitigation, energy security and local air quality. Whereas four papers focus on emissions mitigation policies, one paper examines challenges to adapt fast growing transport infrastructures to future climate change induced risks. Collectively, the papers exemplify a set of policies and measures that can deliver co-benefits, and, also, demonstrate the use of methods, frameworks and models to delineate the optimal mix of such policies and measures.

General information

State: Published
Organisations: Department of Management Engineering, UNEP DTU Partnership, Indian Institute of Management Ahmedabad
Contributors: Shukla, P., Dhar, S.
Pages: 170–175
Publication date: 2015
Peer-reviewed: No

Publication information

Journal: Energy Policy
Volume: 81
ISSN (Print): 0301-4215
Ratings:
- Web of Science (2019): Indexed yes
- BFI (2018): BFI-level 2
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 2
- Scopus rating (2017): CiteScore 4.97 SJR 1.994 SNIP 2.094
- Web of Science (2017): Impact factor 4.039
- Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 2
- Scopus rating (2016): CiteScore 4.49 SJR 2.197 SNIP 1.985
- Web of Science (2016): Impact factor 4.14
- BFI (2015): BFI-level 2
- Scopus rating (2015): CiteScore 3.98 SJR 2.287 SNIP 1.762
- Web of Science (2015): Indexed yes
- BFI (2014): BFI-level 2
- Scopus rating (2014): CiteScore 3.62 SJR 2.143 SNIP 1.892
- Web of Science (2014): Impact factor 2.575
- Web of Science (2014): Indexed yes
- BFI (2013): BFI-level 1
- Scopus rating (2013): CiteScore 3.74 SJR 1.891 SNIP 2.168
- Web of Science (2013): Impact factor 2.696
- ISI indexed (2013): ISI indexed yes
- Web of Science (2013): Indexed yes
- BFI (2012): BFI-level 1
- Scopus rating (2012): CiteScore 3.52 SJR 1.75 SNIP 2.042
- Web of Science (2012): Impact factor 2.743
- ISI indexed (2012): ISI indexed yes
- Web of Science (2012): Indexed yes
- BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.35 SJR 1.578 SNIP 1.934
Web of Science (2011): Impact factor 2.723
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.478 SNIP 1.845
Web of Science (2010): Impact factor 2.629
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.379 SNIP 1.919
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.207 SNIP 1.614
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.29 SNIP 2.136
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.822 SNIP 2.138
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.637 SNIP 1.635
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.909 SNIP 1.747
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.739 SNIP 1.674
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.607 SNIP 1.568
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.525 SNIP 1.623
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.571 SNIP 1.124
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 0.515 SNIP 0.873
Original language: English
DOIs:
10.1016/j.enpol.2015.02.021
Research output: Research › Editorial – Annual report year: 2015