Energy impacts of ICT – Insights from an everyday life perspective

The environmental implications of information and communication technology (ICT) have been the subject of study since the early 1990s. Although previous research covers energy issues quite extensively, the treatment of the energy impacts of ICT integration in everyday life is still inadequate. The purpose of this paper is to complement the existing research by applying a perspective from which everyday life takes centre stage. A theoretical framework for describing and analysing the energy impacts of everyday life is outlined, based on a combination of practice theory and time geography. The framework is applied to a discussion of how ICT co-develops with changing everyday practices and energy-demanding features of everyday life. Based on empirical findings, it is explored how the use of ICT affects practices in relation to time and space, and it is argued that the changes may increase energy consumption considerably. The findings do not suggest that the integration of ICT in everyday practices inherently results in a more energy-intensive everyday life. ICTs have a great potential for reducing energy consumption, but the realisation of this depends on the wider economic and political conditions.

General information
State: Published
Organisations: Department of Management Engineering, Technology and Innovation Management, Aalborg University
Contributors: Røpke, I., Haunstrup Christensen, T.
Pages: 348–361
Publication date: 2012
Peer-reviewed: Yes

Publication information
Journal: Telematics and Informatics
Volume: 29
Issue number: 4
ISSN (Print): 0736-5853
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.33 SJR 1.299 SNIP 2.137
Web of Science (2017): Impact factor 3.789
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.56 SJR 1.233 SNIP 1.871
Web of Science (2016): Impact factor 3.398
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.64 SJR 0.745 SNIP 1.759
Web of Science (2015): Impact factor 2.261
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.93 SJR 0.556 SNIP 1.603
Web of Science (2014): Impact factor 1.12
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.49 SJR 0.396 SNIP 1.261
Web of Science (2013): Impact factor 0.705
ISI indexed (2013): ISI indexed no
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.88 SJR 0.619 SNIP 1.433
ISI indexed (2012): ISI indexed no
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.62 SJR 0.579 SNIP 1.517
ISI indexed (2011): ISI indexed no
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.544 SNIP 1.49
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.419 SNIP 1.078