Energy, Exergy and Advanced Exergy Analysis of a Milk Processing Factory

Publication: Research - peer-reviewJournal article – Annual report year: 2018

DOI

View graph of relations

Energy, exergy and advanced exergy methods were used to analyse a milk powder production facility. While a conventional energy analysis is used to map the energy flows and to suggest possibilities for process integration through pinch analysis, an exergy analysis identifies the locations and magnitudes of thermodynamic irreversibilities. The advanced exergy analysis determines the real potential for thermodynamic improvements by dividing the exergy destruction into its avoidable and unavoidable parts, which relate to technological limitations, and into its endogenous and exogenous parts, which present the interactions between the different sub-systems. This analysis was based on factory data with which the complete production line (milk treatment, evaporators and dryers) and the utility systems were modelled. The results show the potential for optimisation and a comparison of the applicability of the different methods to the dairy industry. The pinch analysis and energy mapping showed that the potential for heat integration was small. The exergy analysis revealed the gas burner and spray dryer caused most exergy destruction, while the heaters had low exergy efficiencies. The advanced exergy analysis found the evaporators to have a high share of avoidable exergy destruction. However not all results from the advanced exergy analysis were practical.
Original languageEnglish
JournalEnergy
Volume162
Pages (from-to)576-592
ISSN0360-5442
DOIs
StatePublished - 2018
CitationsWeb of Science® Times Cited: No match on DOI

    Keywords

  • Energy Efficiency, Exergy Analysis, Advanced Exergy Analysis, Process Integration, Pinch analysis, Dairy Industry
Download as:
Download as PDF
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBE/CSEHarvardMLAStandardVancouverShortLong
Word

ID: 152364640