Endocrine activity of persistent organic pollutants accumulated in human silicone implants — Dosing in vitro assays by partitioning from silicone - DTU Orbit (16/12/2018)

Endocrine activity of persistent organic pollutants accumulated in human silicone implants — Dosing in vitro assays by partitioning from silicone

Persistent organic pollutants (POPs) accumulated in human tissues may pose a risk for human health by interfering with the endocrine system. This study establishes a new link between actual human internal POP levels and the endocrine active dose in vitro, applying partitioning-controlled dosing from silicone to the H295R steroidogenesis assay: (1) Measured concentrations of POPs in silicone breast implants were taken from a recent study and silicone disks were loaded according to these measurements. (2) Silicone disks were transferred into H295R cell culture plates in order to control exposure of the adrenal cells by equilibrium partitioning. (3) Hormone production of the adrenal cells was measured as toxicity endpoint. 4-Nonylphenol was used for method development, and the new dosing method was compared to conventional solvent-dosing. The two dosing modes yielded similar dose-dependent hormonal responses of H295R cells. However, with the partitioning-controlled freely dissolved concentrations (Cfree) as dose metrics, dose–response curves were left-shifted by two orders of magnitude relative to spiked concentrations. Partitioning-controlled dosing of POPs resulted in up to 2-fold increases in progestagen and corticosteroid levels at Cfree of individual POPs in or below the femtomolar range. Silicone acted not only as source of the POPs but also as a sorption sink for lipophilic hormones, stimulating the cellular hormone production. Methodologically, the study showed that silicone can be used as reference partitioning phase to transfer in vivo exposure in humans (silicone implants) to in vitro assays (partition-controlled dosing). The main finding was that POPs at the levels at which they are found in humans can interfere with steroidogenesis in a human adrenocortical cell line.

General information
State: Published
Organisations: National Food Institute, Department of Environmental Engineering, Environmental Chemistry, Research group for Analytical Food Chemistry, Research Group for Molecular Toxicology, Aarhus University
Contributors: Gilbert, D., Mayer, P., Pedersen, M., Vinggaard, A. M.
Pages: 107-114
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Environment International
Volume: 84
ISSN (Print): 0160-4120
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 7.32 SJR 2.568 SNIP 2.211
Web of Science (2017): Impact factor 7.297
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 7.33 SJR 2.472 SNIP 2.395
Web of Science (2016): Impact factor 7.088
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 6.49 SJR 2.544 SNIP 2.125
Web of Science (2015): Impact factor 5.929
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 6.54 SJR 2.708 SNIP 2.303
Web of Science (2014): Impact factor 5.559
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 6.06 SJR 2.657 SNIP 2.202
Web of Science (2013): Impact factor 5.664
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 6.37 SJR 3.17 SNIP 2.448
Web of Science (2012): Impact factor 6.248
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 5.43 SJR 2.773 SNIP 2.315
Web of Science (2011): Impact factor 5.297
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.559 SNIP 1.877
Web of Science (2010): Impact factor 4.691
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.356 SNIP 2.055
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.874 SNIP 2.093
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.595 SNIP 2.194
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.972 SNIP 2.089
Scopus rating (2005): SJR 1.772 SNIP 1.742
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.348 SNIP 1.408
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.699 SNIP 0.995
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.684 SNIP 0.669
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.515 SNIP 0.954
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.618 SNIP 0.58
Scopus rating (1999): SJR 0.632 SNIP 0.723
Original language: English
Source: PublicationPreSubmission
Source-ID: 114409012
Research output: Research - peer-review > Journal article – Annual report year: 2015