Emissive Photoconversion Products of an Amino-triangulenium Dye - DTU Orbit

(15/12/2018)

Emissive Photoconversion Products of an Amino-triangulenium Dye

Upon prolonged exposure to intense blue light, the tris(diethylamino)-trioxatriangulenium (A3-TOTA+) fluorophore can undergo a photochemical reaction to form either a blue-shifted or a red-shifted fluorescent photoproduct. The formation of the latter depends on the amount of oxygen present during the photoconversion. The A3-TOTA+ fluorophore is structurally similar to rhodamine, with peripheral amino groups on a cationic aromatic system. The photoconversion products were identified by UV−vis absorption and steady-state and time-resolved fluorescence spectroscopy, and further characterized by HPLC, LC-MS, and 1H NMR. Two reaction pathways were identified: a dealkylation reaction and an oxidation leading to formation of one or more amide groups on the peripheral donor groups. The photoconversion is controlled by the experimental conditions, in particular the presence of oxygen and water, and the choice of solvent. The results highlight the need to characterize the formation of fluorescent photoproducts of commonly used fluorescent probes, since these could give rise to false positives in multicolor/multi-label imaging, colocalization studies, and FRET based assays. Finally, an improved understanding of the photochemical reaction leading to bleaching of fluorescent dyes can lead to the creation of specific probes for fluorescence based monitoring of chemical reactions.

General information

State: Published
Organisations: University of Copenhagen
Contributors: Liao, Z., Ammitzbøll Bogh, S., Santella, M., Rein, C., Just Sørensen, T., Laursen, B. W., Vosch, T.
Number of pages: 8
Pages: 3554−3561
Publication date: 2016
Peer-reviewed: Yes

Publication information

Volume: 120
ISSN (Print): 1089-5639
Ratings:

BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.75 SJR 1.17 SNIP 0.964
Web of Science (2017): Impact factor 2.836
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.64 SJR 1.252 SNIP 0.958
Web of Science (2016): Impact factor 2.847
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.78 SJR 1.148 SNIP 1.074
Web of Science (2015): Impact factor 2.883
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.65 SJR 1.159 SNIP 1.069
Web of Science (2014): Impact factor 2.693
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.84 SJR 1.205 SNIP 1.109
Web of Science (2013): Impact factor 2.775
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.78 SJR 1.513 SNIP 1.127
Web of Science (2012): Impact factor 2.771
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes