EMF1, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis - DTU Orbit (23/12/2018)

EMF1, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis

Shoot architecture and flowering time in angiosperms depend on the balanced expression of a large number of flowering time and flower meristem identity genes. Loss-of-function mutations in the Arabidopsis EMBRYONIC FLOWER (EMF) genes cause Arabidopsis to eliminate rosette shoot growth and transform the apical meristem from indeterminate to determinate growth by producing a single terminal flower on all nodes. We have identified the EMF1 gene by positional cloning. The deduced polypeptide has no homology with any protein of known function except a putative protein in the rice genome with which EMF1 shares common motifs that include nuclear localization signals, P-loop, and LXXLL elements. Alteration of EMF1 expression in transgenic plants caused progressive changes in flowering time, shoot determinacy, and inflorescence architecture. EMF1 and its related sequence may belong to a new class of proteins that function as transcriptional regulators of phase transition during shoot development.

General information

State: Published
Organisations: Risø National Laboratory for Sustainable Energy
Contributors: Aubert, D., Chen, L., Moon, Y., Martin, D., Castle, L., Yang, C., Sung, Z.
Pages: 1865-1875
Publication date: 2001
Peer-reviewed: Yes

Publication Information

Journal: Plant Cell
Volume: 13
Issue number: 8
ISSN (Print): 1040-4651
Ratings:
 - BFI (2018): BFI-level 2
 - Web of Science (2018): Indexed yes
 - BFI (2017): BFI-level 2
 - Scopus rating (2017): CiteScore 7.33 SJR 5.597 SNIP 2.038
 - Web of Science (2017): Impact factor 8.228
 - Web of Science (2017): Indexed yes
 - BFI (2016): BFI-level 2
 - Scopus rating (2016): CiteScore 7.66 SJR 5.776 SNIP 2.045
 - Web of Science (2016): Impact factor 8.726
 - BFI (2015): BFI-level 2
 - Scopus rating (2015): CiteScore 8.1 SJR 5.606 SNIP 2.081
 - BFI (2014): BFI-level 2
 - Scopus rating (2014): CiteScore 8.4 SJR 5.771 SNIP 2.191
 - BFI (2013): BFI-level 2
 - Scopus rating (2013): CiteScore 9.37 SJR 6.213 SNIP 2.274
 - Web of Science (2013): Impact factor 9.575
 - ISI indexed (2013): ISI indexed yes
 - BFI (2012): BFI-level 2
 - Scopus rating (2012): CiteScore 8.34 SJR 6.257 SNIP 2.08
 - Web of Science (2012): Impact factor 9.251
 - ISI indexed (2012): ISI indexed yes
 - Web of Science (2012): Indexed yes
 - BFI (2011): BFI-level 2
 - Scopus rating (2011): CiteScore 8.25 SJR 5.926 SNIP 2.065
 - Web of Science (2011): Impact factor 8.987
 - ISI indexed (2011): ISI indexed yes
 - Web of Science (2011): Indexed yes
 - BFI (2010): BFI-level 2
 - Scopus rating (2010): SJR 6.869 SNIP 2.198
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 7.554 SNIP 2.226
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 7.458 SNIP 2.012
Scopus rating (2007): SJR 8.422 SNIP 2.311
Scopus rating (2006): SJR 7.873 SNIP 2.19
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 7.775 SNIP 2.386
Scopus rating (2004): SJR 7.7 SNIP 2.338
Scopus rating (2003): SJR 7.727 SNIP 2.2
Scopus rating (2002): SJR 7.582 SNIP 2.398
Scopus rating (2001): SJR 8.011 SNIP 2.447
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 8.742 SNIP 2.703
Scopus rating (1999): SJR 8.834 SNIP 2.75
Original language: English
DOIs:
10.2307/3871324
Source: orbit
Source-ID: 318368
Research output: Research - peer-review; Journal article – Annual report year: 2001