Emerging issues and methodological advances in fisheries reproductive biology

Emerging issues and methodological advances in fisheries reproductive biology
Although incorporating detailed reproductive data into all stock assessments is not a practical goal, the need to understand how reproductive biology affects population productivity is being increasingly recognized. More research focused on reproductive biology—coupled with a shift towards a resilience perspective in fisheries science—is resulting in challenges to many long-held assumptions; the emergence of important new issues; and identification of the need to improve data and methods used in reproductive studies. Typically, data for reproductive studies are based on an assessment of gonadal development, which is most accurately evaluated with histology. This special section of Marine and Coastal Fisheries contains contributions from a workshop on the gonadal histology of fishes that was held in Cadiz, Spain, during June 2009. These papers cover a wide range of species and reproductive topics while introducing improved and new histological techniques. In this introduction, we address the following needs: (1) to employ standardization, thereby improving our ability to conduct comparative studies; (2) to better understand patterns of gonadal development and spawning events over time; and (3) to move beyond the spawning stock biomass paradigm. We identify the contributions of special section papers to these topics and conclude by suggesting needs.

General information
State: Published
Organisations: Section for Population Ecology and Genetics, National Institute of Aquatic Resources
Pages: 32-51
Publication date: 2011
Peer-reviewed: Yes

Publication information
Journal: Marine and Coastal Fisheries
Volume: 3
Issue number: 1
ISSN (Print): 1942-5120
Ratings:
Web of Science (2018): Indexed yes
Scopus rating (2017): CiteScore 1.52 SJR 0.906 SNIP 0.774
Web of Science (2017): Impact factor 1.58
Web of Science (2017): Indexed yes
Scopus rating (2016): CiteScore 1.22 SJR 0.729 SNIP 0.792
Web of Science (2016): Impact factor 1.177
Web of Science (2016): Indexed yes
Scopus rating (2015): CiteScore 1.52 SJR 0.867 SNIP 1.078
Web of Science (2015): Impact factor 1.442
Scopus rating (2014): CiteScore 2.45 SJR 1.402 SNIP 1.609
Web of Science (2014): Impact factor 1.592
Scopus rating (2013): CiteScore 1.93 SJR 1.28 SNIP 1.265
Web of Science (2013): Impact factor 1.81
ISI indexed (2013): ISI indexed yes
Scopus rating (2012): CiteScore 1.6 SJR 1.022 SNIP 1.06
Web of Science (2012): Impact factor 1.794
ISI indexed (2012): ISI indexed no
Scopus rating (2011): SJR 0.753 SNIP 1.087
Web of Science (2011): Impact factor 1.065
ISI indexed (2011): ISI indexed no
Web of Science (2011): Indexed yes
Scopus rating (2010): SJR 0.404 SNIP 1.099
Web of Science (2010): Indexed yes
Original language: English
Electronic versions:
Jonna artikel 2011.pdf
DOIs:
10.1080/19425120.2011.555725
Source: orbit