Emergence time and skin melanin spot patterns do not correlate with growth performance, social competitive ability or stress response in farmed rainbow trout

Emergence time and skin melanin spot patterns do not correlate with growth performance, social competitive ability or stress response in farmed rainbow trout

In wild salmonid fish, specific individual behavioral traits have been correlated with the timing of fry emergence from their gravel spawning nests; Early emerging fish display more aggressive behavior and have a higher probability of becoming socially dominant, compared to fish that emerge at a later stage. Apart from aggression and dominance, other behavioral and metabolic traits, such as boldness, metabolic rate, or growth, have also been linked to emergence time. Altogether, the traits of early- and late-emerging fish resemble those of the proactive and reactive stress-coping style, respectively. As proactive fish are considered more resilient to stress, it may be desirable to select these for aquaculture production. However, it is currently unclear to what extent the link between emergence time and stress-coping styles is maintained in the selective breeding of farmed fish. In the present study, eyed eggs from a commercial supplier were hatched, and larvae fractionated according to their emergence time. Later on, juvenile fish from different emergence fractions were subjected to a stress challenge and also tested to evaluate their competitive ability for food. Beyond some slight dissimilarities in the acute stress responses, emergence fraction displayed no correlation with growth rates, or the ability to compete for food. Within the whole group of fish utilized in the experiments, no relationship between skin melanin spot pattern and growth performance, stress response intensity, or competitive ability was found. Altogether, the differences in physiological traits related to emergence time were not as strong as those found in earlier studies. It is hypothesized, that the origin and degree of domestication of the fish might be partly responsible for this. The predictive value of skin spots or emergence time to infer the fish stress coping style in farmed fish is also discussed.

General information
State: Published
Organisations: National Institute of Aquatic Resources, Section for Aquaculture
Contributors: Gesto, M., Skov, P. V., Jokumsen, A.
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Frontiers in Neuroscience
Volume: 11
Article number: 319
ISSN (Print): 1662-4548
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.94 SJR 1.769 SNIP 1.146
Web of Science (2017): Impact factor 3.877
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.85 SJR 1.941 SNIP 1.092
Web of Science (2016): Impact factor 3.566
Scopus rating (2015): CiteScore 3.72 SJR 2.041 SNIP 1.088
Scopus rating (2014): CiteScore 3.84 SJR 2.079 SNIP 1.089
Web of Science (2014): Impact factor 3.656
Scopus rating (2013): CiteScore 3.61 SJR 2.096 SNIP 1.101
Scopus rating (2012): CiteScore 3.25 SJR 1.741 SNIP 1.001
Scopus rating (2011): SJR 1.716 SNIP 1.233
Scopus rating (2010): SJR 1.347 SNIP 0.693
Original language: English
Electronic versions:
Publishers version
DOIs:
10.3389/fnins.2017.00319
Source: PublicationPreSubmission
Source-ID: 133201967
Research output: Research - peer-review › Journal article – Annual report year: 2017