Embedded water-based surface heating part 2: experimental validation

Publication: Research - peer-reviewJournal article – Annual report year: 2010

NullPointerException

View graph of relations

The transient operation of an embedded water-based floor heating system has been studied by means of a numerical simulation tool. Prior to this study, Caccavelli and Richard (Caccavelli D, Richard P (1994) Etude portant sur le dimensionnement d'un plancher chauffant a eau chaude en CIC. Rapport n(o) 2, n(o) GEC/DST-94.050R, CSTB, France.) experimentally derived reference data for the specific setup. This article constitutes an attempt to experimentally validate the numerical simulation tool that was recently developed by Karlsson (Karlsson H (2010) Embedded water-based surface heating, part 1: hybrid 3D numerical model. Journal of Building Physics 33: 357-391). The thermal response of the system is tested in both long (16 h) and short (30 min) cycle experiments where the water flow alters between on and off. Temperature distribution, within the floor construction, and the heat exchange process are studied throughout the test cycles. The model underestimates the steady-state heat exchange from the pipe loop by 16% when boundary conditions and thermal properties according to the reference case are applied. Temperatures at the floor surface are assessed with good precision while temperatures at the core of the concrete slab are underestimated by up to 1.5 degrees C. Amplitudes, phase shifts, rise, and delay times at different measurement points are simulated with good precision. A sensitivity analysis is performed where material parameters and boundary conditions are analyzed. None of the tested parameters can independently explain the observed general trend in temperature deviations between simulations and measurements.
Original languageEnglish
JournalJournal of Building Physics
Publication date2010
Volume34
Journal number2
Pages143-162
ISSN1744-2591
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 0

Keywords

  • simulink modeling, convective surface heat transfer, dynamic modeling, low temperature heating, floor heating
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 5145359