Elevating the predatory effect: Sensory-scanning foraging strategy by the lobate ctenophore Mnemiopsis leidyi - DTU Orbit (26/04/2019)

Elevating the predatory effect: Sensory-scanning foraging strategy by the lobate ctenophore Mnemiopsis leidyi

The influential predatory role of the lobate comb jellyfish Mnemiopsis leidyi has largely been attributed to the generation of a hydrodynamically silent feeding current to entrain and initiate high encounter rates with prey. However, for high encounter rates to translate to high ingestion rates, M. leidyi must effectively capture the entrained prey. To investigate the capture mechanisms, we recorded and quantified, using three-dimensional videography, the outcome of encounter events with slow swimming Artemia prey. The auricles, which produce the feeding current of M. leidyi, were the primary encounter structures, first contacting 59% of the prey in the feeding current. Upon detection, the auricles manipulated the Artemia to initiate captures on the tentillae, which are coated with sticky cells (colloblasts). Using this mechanism of sensory-scanning to capture prey entrained in the feeding current, M. leidyi uses a similar foraging strategy to that of feeding-current foraging copepods. As such, M. leidyi has a higher capture efficiency than do medusae, contributing to the greater predatory effect of M. leidyi in both its endemic and invasive ecosystems.

General information
Publication status: Published
Organisations: National Institute of Aquatic Resources, Section for Marine Ecology and Oceanography, Marine Biological Laboratory, Providence College, University of California at Berkeley, University of Texas, University of Oregon, GEOMAR - Helmholtz Centre for Ocean Research Kiel
Contributors: Colin, S. P., MacPherson, R., Gemmell, B., Costello, J. H., Sutherland, K., Jaspers, C.
Pages: 100-109
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Limnology and Oceanography
Volume: 60
Issue number: 1
ISSN (Print): 0024-3590
Ratings:
BFI (2015): BFI-level 2
Web of Science (2015): Impact factor 3.66
Web of Science (2015): Indexed yes
Original language: English
Keywords: LIMNOLOGY, OCEANOGRAPHY, JELLYFISH AURELIA-AURITA, COPEPOD ACARTIA-TONSA, PREY DETECTION, PLANKTONIC COPEPOD, OITHONA-DAVISAE, CAPTURE, RATES, SEA, ZOOPLANKTON, FISH
DOIs: 10.1002/lno.10007
Source: FindIt
Source-ID: 274178065
Research output: Contribution to journal › Journal article – Annual report year: 2015 › Research › peer-review