Electrospray Mass Spectrometry Investigation into the Formation of CPO-27

Electrospray ionisation mass spectrometry (ESI-MS) has been utilised to investigate the self-assembly processes occurring during the formation of the microporous metal-organic framework CPO-27-M (M = Co, Ni). The mono- and dinuclear building units \(\{M(Hxdhtp)\} \) and \(\{M_2(Hxdhtp)\} \), where Hxdhtp is the organic linker HxC8O6 and fragments thereof, were identified as key species present in the reaction mixture during the product formation. Time resolved powder X-ray diffraction analysis were used to follow the synthesis, and confirm that no other crystalline products occur in the reaction mixture prior to the crystallisation of CPO-27-Ni. When the reaction was performed at room temperature instead of the higher temperature of the solvothermal procedure, the compounds \(\{(M(H2dhtp)(H2O)4·2H2O)\} \) (M = Co, Ni) crystallized instead of CPO-27. It was confirmed that mono- and dinuclear species are key building blocks not only in the formation of CPO-27-M, but also in the formation of the 1D chain structure \(\{(M(H2dhtp)(H2O)4\} \) obtained from these room temperature reactions.

General information
State: Accepted/In press
Organisations: Imaging and Structural Analysis, Department of Energy Conversion and Storage, University of Bergen, University of Glasgow
Contributors: Rosnes, M. H., Mathieson, J. S., Törnroos, K. W., Johnsen, R. E., Cronin, L., Dietzel, P. D. C.
Number of pages: 25
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Crystal Growth & Design
ISSN (Print): 1528-7483
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.93 SJR 1.154 SNIP 1.103
Web of Science (2017): Impact factor 3.972
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4 SJR 1.177 SNIP 1.226
Web of Science (2016): Impact factor 4.055
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.48 SJR 1.261 SNIP 1.325
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.84 SJR 1.361 SNIP 1.463
Web of Science (2014): Impact factor 4.891
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.59 SJR 1.333 SNIP 1.443
Web of Science (2013): Impact factor 4.558
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 4.7 SJR 1.573 SNIP 1.573
Web of Science (2012): Impact factor 4.689
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 4.76 SJR 1.472 SNIP 1.565
Web of Science (2011): Impact factor 4.72
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.567 SNIP 1.42
Web of Science (2010): Impact factor 4.39
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.532 SNIP 1.564
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.557 SNIP 1.635
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.476 SNIP 1.633
Scopus rating (2006): SJR 1.433 SNIP 1.575
Scopus rating (2005): SJR 1.218 SNIP 1.503
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.05 SNIP 1.112
Scopus rating (2003): SJR 0.776 SNIP 1.059
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.546 SNIP 0.857
Original language: English
Keywords: Metal-Organic Frameworks (MOFs), Self-Assembly, Crystallisation, CPO-27-M, Electrospray ionisation mass spectrometry (ESI-MS), Time resolved PXRD
DOIs: 10.1021/acs.cgd.8b01657
Research output: Research - peer-review › Journal article – Annual report year: 2019