Electroosmotic dewatering of chalk sludge, iron hydroxide sludge, wet fly ash and biomass sludge - DTU Orbit (16/02/2019)

Electroosmotic dewatering of chalk sludge, iron hydroxide sludge, wet fly ash and biomass sludge

Electroosmotic dewatering has been tested in laboratory cells on four different porous materials: chalk sludge, iron hydroxide sludge, wet fly ash and biomass sludge from enzyme production. In all cases it was possible to remove water when passing electric DC current through the material. Casagrande’s coefficients were determined for the four materials at different water contents. The experiments in this work showed that chalk could be dewatered from 40% to 79% DM (dry matter), fly ash from 75 to 82% DM, iron hydroxide sludge from 2.7 to 19% DM and biomass from 3 to 33% DM by electroosmosis. The process was not optimised indicating that higher dry matter contents could be achieved by electroosmosis. It was possible to relate Casagrande's coefficient directly to the electroosmotic coefficient obtained by dewatering experiments.

General information
State: Published
Organisations: Section for Construction Materials, Department of Civil Engineering, Section for Geotechnics and Geology, Arctic Technology Centre
Contributors: Hansen, H., Christensen, I. V., Ottosen, L. M., Villumsen, A.
Pages: 689-694
Publication date: 2003
Peer-reviewed: Yes

Publication information
Journal: Journal of Chemical Engineering of Japan
Volume: 36
Issue number: 6
Original language: English
Source: orbit
Source-ID: 23563
Research output: Research - peer-review › Journal article – Annual report year: 2003