Electron–phonon coupling in single-layer MoS2

Electron–phonon coupling in single-layer MoS2
The electron–phonon coupling strength in the spin–split valence band maximum of single-layer MoS2 is studied using angle-resolved photoemission spectroscopy and density functional theory-based calculations. Values of the electron–phonon coupling parameter λ are obtained by measuring the linewidth of the spin–split bands as a function of temperature and fitting the data points using a Debye model. The experimental values of λ for the upper and lower spin–split bands at K are found to be 0.05 and 0.32, respectively, in excellent agreement with the calculated values for a free-standing single-layer MoS2. The results are discussed in the context of spin and phase-space restricted scattering channels, as reported earlier for single-layer WS2 on Au(111). The fact that the absolute valence band maximum in single-layer MoS2 at K is almost degenerate with the local valence band maximum at Γ can potentially be used to tune the strength of the electron–phonon interaction in this material.

General information
State: Published
Organisations: Technical University of Denmark, Department of Physics, Aarhus University, University of Trieste, CNR, Rutherford Appleton Laboratory, Martin Luther University Halle-Wittenberg, Sincrotrone Trieste
Number of pages: 6
Pages: 64-69
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Surface Science
Volume: 681
ISSN (Print): 0039-6028
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.87 SJR 0.81 SNIP 0.759
Web of Science (2017): Impact factor 1.997
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.85 SJR 0.746 SNIP 0.834
Web of Science (2016): Impact factor 2.062
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.85 SJR 0.747 SNIP 0.804
Web of Science (2015): Impact factor 1.931
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.81 SJR 0.818 SNIP 0.864
Web of Science (2014): Impact factor 1.925
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.72 SJR 0.829 SNIP 0.781
Web of Science (2013): Impact factor 1.87
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.91 SJR 1.096 SNIP 0.878
Web of Science (2012): Impact factor 1.838
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.88 SJR 1.076 SNIP 0.906
Web of Science (2011): Impact factor 1.994
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.228 SNIP 0.858
Web of Science (2010): Impact factor 2.011
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 1.129 SNIP 0.896
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.215 SNIP 0.838
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.134 SNIP 0.856
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.287 SNIP 0.947
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.46 SNIP 1.044
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.57 SNIP 1.082
Scopus rating (2003): SJR 1.718 SNIP 1.09
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.401 SNIP 1.049
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.812 SNIP 1.041
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 1.979 SNIP 0.954
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 1.752 SNIP 0.974
Original language: English
Keywords: Angle-resolved photoemission spectroscopy, Density functional theory, Electron-phonon coupling, Transition metal dichalcogenides
DOIs:
10.1016/j.susc.2018.11.012
Source: Scopus
Source-ID: 85057319967
Research output: Research - peer-review; Journal article – Annual report year: 2019