Electronic transport in graphene-based structures: An effective cross-section approach

Publication: Research - peer-reviewJournal article – Annual report year: 2012

View graph of relations

We show that transport in low-dimensional carbon structures with finite concentrations of scatterers can be modeled by utilizing scaling theory and effective cross sections. Our results are based on large-scale numerical simulations of carbon nanotubes and graphene nanoribbons, using a tight-binding model with parameters obtained from first-principles electronic structure calculations. As shown by a comprehensive statistical analysis, the scattering cross sections can be used to estimate the conductance of a quasi-one-dimensional system both in the Ohmic and localized regimes. They can be computed with good accuracy from the transmission functions of single defects, greatly reducing the computational cost and paving the way toward using first-principles methods to evaluate the conductance of mesoscopic systems, consisting of millions of atoms.
Original languageEnglish
JournalPhysical Review B (Condensed Matter and Materials Physics)
Issue number4
Pages (from-to)041401
StatePublished - 2012
CitationsWeb of Science® Times Cited: 10
Download as:
Download as PDF
Select render style:
Download as HTML
Select render style:
Download as Word
Select render style:

Download statistics

No data available

ID: 6585817