Electronic origins of the giant volume collapse in the pyrite mineral MnS$_2$ - DTU Orbit
(13/05/2019)

Electronic origins of the giant volume collapse in the pyrite mineral MnS$_2$

The pyrite mineral MnS$_2$ was recently shown to undergo a giant pressure-induced volume collapse at ~ 12 GPa, via a disordered intermediate phase. The high pressure arsenopyrite phase is stabilised by metal-metal bonding, a mechanism now shown to be ubiquitous for Mn$^{2+}$ chalcogenides. Here we report a spectroscopic investigation of this transition up to pressures of 22 GPa. Using XANES we show that the transition does not involve a change in oxidation state, consistent with the arsenopyrite crystal structure proposed at high pressure. Notably, the XANES spectrum is almost identical in the pressure-induced disordered phase, and after crystallisation induced by laser-heating. The former is therefore a ‘valence bond glass’, and is likely disordered due to kinetic hindrance of the phase transition. We also detect electronic changes in the compressed pyrite phase, and this is confirmed by Raman scattering which shows that the disulphide vibrations in the pyrite phase saturate before the volume collapse. Together with detailed DFT calculations, these results indicate that electronic changes precede valence bond formation between the Mn$^{2+}$ cations.

General information
Publication status: Published
Organisations: Department of Physics, Technical University of Denmark, Neutrons and X-rays for Materials Physics, University of Nevada Las Vegas, University of Bayreuth, Lawrence Livermore National Laboratory, Institut Laue-Langevin, Ehime University, Oak Ridge National Laboratory, European Synchrotron Radiation Facility
Corresponding author: Kimber, S. A.
Number of pages: 7
Pages: 540-546
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Journal of Solid State Chemistry
Volume: 269
ISSN (Print): 0022-4596
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
Original language: English
Keywords: Magnetism, Pressure, Pyrite, Spin-state transition
DOIs: 10.1016/j.jssc.2018.10.032
Source: Scopus
Source-ID: 85055731963
Research output: Contribution to journal › Journal article – Annual report year: 2019 › Research › peer-review