Electron transfer patterns of the di-heme protein cytochrome c(4) from Pseudomonas stutzeri - DTU Orbit (19/12/2018)

Electron transfer patterns of the di-heme protein cytochrome c(4) from Pseudomonas stutzeri

We report kinetic data for the two-step electron transfer (ET) oxidation and reduction of the two-domain di-heme redox protein Pseudomonas stutzeri cytochrome (cyt) c(4) by [Co(bipy)(3)](2- 3-) (bipy = 2,2'-bipyridine). Following earlier reports, the data accord with both bi- and tri-exponential kinetics. A complete kinetic scheme includes both "cooperative" intermolecular ET between each heme group and the external reaction partner, and intramolecular ET between the two heme groups. A new data analysis scheme shows unequivocally that two-ET oxidation and reduction of P. stutzeri cyt c(4) is entirely dominated by intermolecular ET between the heme groups and the external reaction partner in the ms time range, with virtually no contribution from intramolecular interheme ET in this time range. This is in striking contrast to two-ET electrochemical oxidation or reduction of P. stutzeri cyt c(4) for which fast, ms to sub-ms intramolecular interheme ET is a crucial step. The rate constant dependence on the solvent viscosity has disclosed strong coupling to both a (set of) frictionally damped solvent/protein nuclear modes and intramolecular friction-less "ballistic" modes, indicative of notable protein structural mobility in the overall two-ET process. We suggest that conformational protein mobility blocks intramolecular interheme ET in bulk homogeneous solution but triggers opening of this gated ET channel in the electrochemical environment or in the membrane environment of natural respiratory cyt c(4) function.

General information

State: Published
Organisations: Analytical Chemistry, Department of Chemistry, Metalloprotein Chemistry and Engineering, NanoChemistry
Contributors: Raffalt, A. C., Schmidt, L., Christensen, H. E. M., Chi, Q., Ulstrup, J.
Pages: 717-722
Publication date: 2009
Peer-reviewed: Yes

Publication information

Journal: Journal of Inorganic Biochemistry
Volume: 103
Issue number: 5
ISSN (Print): 0162-0134
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 3.18 SJR 0.743 SNIP 0.916
Web of Science (2017): Impact factor 3.063
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 3.12 SJR 0.742 SNIP 0.936
Web of Science (2016): Impact factor 3.348
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.39 SJR 0.952 SNIP 1.086
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.42 SJR 1.026 SNIP 1.111
Web of Science (2014): Impact factor 3.444
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.32 SJR 0.924 SNIP 1.112
Web of Science (2013): Impact factor 3.274
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.39 SJR 0.99 SNIP 1.243
Web of Science (2012): Impact factor 3.197
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 3.44 SJR 1.021 SNIP 1.308
Web of Science (2011): Impact factor 3.354
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.955 SNIP 1.216
Web of Science (2010): Impact factor 3.317
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.445 SNIP 1.358
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.543 SNIP 1.435
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.891 SNIP 1.194
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.992 SNIP 1.235
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 0.837 SNIP 1.113
Scopus rating (2003): SJR 0.879 SNIP 1.118
Scopus rating (2002): SJR 0.731 SNIP 1.041
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.617 SNIP 0.801
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.492 SNIP 0.843
Scopus rating (1999): SJR 0.55 SNIP 0.912
Original language: English
Keywords: Cytochrome c(4), Intramolecular electron transfer
DOIs:
10.1016/j.jinorgbio.2009.01.004
Source: orbit
Source-ID: 249186
Research output: Research - peer-review › Journal article – Annual report year: 2009