Electron microscopic and optical investigations of the indium distribution GaAs capped InxGa1-xAs islands - DTU Orbit (24/12/2018)

Electron microscopic and optical investigations of the indium distribution GaAs capped InxGa1-xAs islands
Results from a structural and optical analysis of buried InxGa1-xAs islands carried out after the process of GaAs overgrowth are presented. It is found that during the growth process, the indium concentration profile changes and the thickness of the wetting layer emanating from a Stranski-Krastanow growth mode grows significantly. Quantum dots are formed due to strong gradients in the indium concentration, which is demonstrated by photoluminescence and excitation spectroscopy of the buried InxGa1-xAs islands. (C) 1997 American Institute of Physics.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Karlsruher Institut für Technologie
Pages: 377-379
Publication date: 1997
Peer-reviewed: Yes

Publication information
Volume: 71
Issue number: 3
ISSN (Print): 0003-6951
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.25 SJR 1.382 SNIP 1.167
Web of Science (2017): Impact factor 3.495
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.67 SJR 1.673 SNIP 1.249
Web of Science (2016): Impact factor 3.411
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.47 SJR 1.499 SNIP 1.226
Web of Science (2015): Impact factor 3.142
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.25 SJR 1.861 SNIP 1.492
Web of Science (2014): Impact factor 3.302
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.77 SJR 2.146 SNIP 1.633
Web of Science (2013): Impact factor 3.515
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.76 SJR 2.57 SNIP 1.739
Web of Science (2012): Impact factor 3.794
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 4.04 SJR 2.814 SNIP 1.917
Web of Science (2011): Impact factor 3.844
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.92 SNIP 1.775
Web of Science (2010): Impact factor 3.841
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.826 SNIP 1.834
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.894 SNIP 1.82
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 3.012 SNIP 1.916
Web of Science (2007): Indexed yes
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 3.755 SNIP 2.353
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 3.992 SNIP 2.367
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 3.879 SNIP 2.275
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 4.018 SNIP 2.414
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 4.281 SNIP 2.22
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 4.178 SNIP 2.017
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 4.173 SNIP 2.066
Original language: English
Keywords: QUANTUM DOTS
Electronic versions:
Woggon.pdf
DOIs:
10.1063/1.119542
URLs:
http://link.aip.org/link/?APPLAB/71/377/1

Bibliographical note
Copyright (1997) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
Source: orbit
Source-ID: 167393
Research output: Research - peer-review › Journal article – Annual report year: 1997