Electron micrography and x-ray study of dip-lacquered LiF (220)

It has been proposed to use the 220 reflection of LiF with a multilayer deposited upon the top for simultaneous spectroscopy near Fe-k and O-k and below the C-k absorption edge (284 eV) in x-ray astronomy. We demonstrate that a substantial reduction of surface roughness is obtained by dip lacquering state-of-the-art polished LiF(220) surfaces. Using a microdensitometer analysis of electron micrographs of surface replicas and x-ray reflection, we have measured ∼ 10-Å rms roughness of Au-coated dip-lacquered LiF(220) crystals, as opposed to ∼ 60 Å measured on the bare LiF(220) crystal surface.
<table>
<thead>
<tr>
<th>Year</th>
<th>Scopus Rating (SJR)</th>
<th>Scopus Rating (SNIP)</th>
<th>Web of Science (Impact Factor)</th>
<th>Indexed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>1.079</td>
<td>1.603</td>
<td>1.707</td>
<td>Yes</td>
</tr>
<tr>
<td>2009</td>
<td>1.2</td>
<td>1.678</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>2008</td>
<td>1.329</td>
<td>1.67</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>2007</td>
<td>1.219</td>
<td>1.604</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>2006</td>
<td>1.151</td>
<td>1.706</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>2005</td>
<td>1.186</td>
<td>1.709</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>2004</td>
<td>1.054</td>
<td>1.852</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>2003</td>
<td>1.205</td>
<td>1.656</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>2002</td>
<td>1.025</td>
<td>1.906</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>2001</td>
<td>1.398</td>
<td>1.741</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>2000</td>
<td>1.667</td>
<td>1.056</td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

Original language: English

DOIs: 10.1364/AO.30.003667

Research output: Research - peer-review › Journal article – Annual report year: 1991