Electrochemical stability of subnanometer Pt clusters

In the present work, the degradation of size-selected Pt nanoclusters is studied under electrochemical conditions. This model catalyst mimics carbon supported Pt nanoclusters and nanoparticles typically employed in proton exchange membrane fuel cells (PEMFCs). Insight into the early stage of degradation is given by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and confirmed by transmission electron microscopy (TEM). In contrast to common assumptions, it is demonstrated that even extremely small Pt clusters exhibit a remarkable stability under electrochemical conditions. Such nanoclusters are then relevant to develop electrodes for energy applications. Furthermore, applying mixed cluster samples of Pt$_{22}$ and Pt$_{68}$, no preferential dissolution of Pt$_{22}$ by Ostwald ripening - usually held responsible to be the main mechanism for activity loss in Pt fuel cell catalysts - is observed. In light of the findings reported, developing highly-dispersed subnanometer Pt clusters as catalyst for PEMFCs is a realistic approach provided the operation conditions are suitably adjusted. Furthermore, mitigation strategies to improve the stability of few-atoms catalyst under electrochemical operation will benefit from addressing cluster-support interactions.

General information
State: Published
Organisations: Center for Electron Nanoscopy, DTU Danchip, University of Copenhagen, Technical University of Munich
Pages: 211-217
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Electrocimica Acta
Volume: 277
ISSN (Print): 0013-4686
Ratings:
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.01 SJR 1.439 SNIP 1.101
Web of Science (2017): Impact factor 5.116
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.74 SJR 1.355 SNIP 1.177
Web of Science (2016): Impact factor 4.798
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 4.86 SJR 1.321 SNIP 1.324
Web of Science (2015): Impact factor 4.803
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.59 SJR 1.378 SNIP 1.456
Web of Science (2014): Impact factor 4.504
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 4.44 SJR 1.427 SNIP 1.587
Web of Science (2013): Impact factor 4.086
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 3.99 SJR 1.644 SNIP 1.574
Web of Science (2012): Impact factor 3.777
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1