Electrochemical stability of (La,Sr)CoO$_3$-δ in (La,Sr)CoO$_3$-δ/\((\text{Ce, Gd})\text{O}_2$-$\delta$) heterostructures

Electrochemical stability of (La,Sr)CoO$_3$-δ in (La,Sr)CoO$_3$-δ/\((\text{Ce, Gd})\text{O}_2$-$\delta$) heterostructures

A modulated coherent (La,Sr)CoO$_3$-δ/\((\text{Ce, Gd})\text{O}_2$-$\delta$) heterostructure is characterized for the first time for its electronic and chemical properties. 2D-multilayer architectures are deposited on NdGaO$_3$ (110) single crystal substrate by pulsed laser deposition, resulting in epitaxial structures with in-plane lattice rotation that, via the metal oxides’ interfaces, induces mutual structural rearrangements. Our results show that (La,Sr)CoO$_3$-δ thin films of 10-100 nm are chemically unstable when exposed to air at 600 °C during electrical cyclic stress-tests. Conversely, improved stability is achieved confining LSC in the nanometric heterostructure. Remarkably, the chemical stabilization occurs without compromising substantially the electrical properties of the LSC component: the heterostructures show unexpected electrical behavior with dominant electronic contributions, fast conductivity and mixed ionic-electronic properties, depending on the number of interfaces and the nano-scaled layers.

General information
State: Published
Organisations: Functional Oxides, Department of Energy Conversion and Storage, Imaging and Structural Analysis, University of Málaga
Pages: 2916-2924
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: Nanoscale
Volume: 11
Issue number: 6
ISSN (Print): 2040-3364
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 7.57 SJR 2.934 SNIP 1.442
Web of Science (2017): Impact factor 7.233
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 7.46 SJR 2.789 SNIP 1.441
Web of Science (2016): Impact factor 7.367
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 7.97 SJR 2.77 SNIP 1.542
Web of Science (2015): Impact factor 7.76
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 7.64 SJR 2.646 SNIP 1.649
Web of Science (2014): Impact factor 7.394
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 6.89 SJR 2.558 SNIP 1.467
Web of Science (2013): Impact factor 6.739
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 6.08 SJR 2.769 SNIP 1.349
Web of Science (2012): Impact factor 6.233
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes